运动性
扩展器
低温保存
男科
精子
生物
精子活力
下调和上调
化学
细胞生物学
生物化学
遗传学
胚胎
基因
有机化学
医学
聚氨酯
作者
Renzheng Zhang,Yiwei Chen,Pengjia Bao,Fude Wu,Chunnian Liang,Xian Guo,Min Kyung Chu,Ping Yan
标识
DOI:10.1016/j.theriogenology.2023.08.016
摘要
Sperm cryodamage caused by cryopreservation limits the use of frozen yak spermatozoa in artificial insemination (AI). However, the proteomic changes involved in the cryodamage of yak spermatozoa have not been investigated to date. Therefore, this study aimed to identify proteins related to freezing tolerance. Tandem mass tag (TMT) were used in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identifying differentially expressed proteins (DEPs) between high-motility (HM) and low-motility (LM) frozen-thawed yak spermatozoa. A total of 116 DEPs were identified (>1.5-fold, P < 0.05); of which, 104 proteins were upregulated in HM spermatozoa and 12 proteins were upregulated in LM spermatozoa. The results of functional annotation analysis revealed that the DEPs were mainly involved in metabolic processes. A total of 20 DEPs that were abundantly expressed in HM spermatozoa were strongly associated with carbohydrate metabolism. The results of KEGG analysis revealed that the DEPs were enriched in glycolysis/gluconeogenesis, PPAR signaling pathway, and Ras signaling pathway. In addition, many antioxidant enzymes such as superoxide dismutase (SOD1), peroxiredoxin-6 (PRDX6), and Parkinson disease protein 7 (PARK7) were upregulated in HM spermatozoa, suggesting that these enzymes affect the motility of spermatozoa by regulating the levels of reactive oxygen species (ROS) in frozen-thawed spermatozoa. Altogether, the findings of this study elucidate the mechanisms through which cryopreservation affects the movement of yak spermatozoa and offer a novel basis for refining freezing techniques and modifying cryopreservation extender components.
科研通智能强力驱动
Strongly Powered by AbleSci AI