已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data driven approach for the management of wind and solar energy integrated electrical distribution network with high penetration of electric vehicles

可再生能源 光伏系统 风力发电 汽车工程 环境科学 电力系统 电力 分布式发电 工程类 电气工程 功率(物理) 物理 量子力学
作者
Manuel S. Mathew,Mohan Lal Kolhe,Surya Teja Kandukuri,Christian W. Omlin
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:421: 138467-138467 被引量:2
标识
DOI:10.1016/j.jclepro.2023.138467
摘要

With the increased penetration of fluctuating renewables and growing population of contemporary loads such as electric vehicles, the uncertainties in the generation and demand in the electric power grids are increasing. This makes the efficient operation and management of these systems challenging. Objective of this study is to propose a real-time management system for EV charging, which maximises the renewable energy utilization. An electric power distribution network with an average and peak demands of 1.51 MW, and 3.6 MW respectively, was chosen for the study. The real time power flow through the network components were analyzed using the OpenDSS model. With a wind power density of 574.51 W/m2 and a solar insolation of 4.14 kWh/m2/day, an optimized renewable energy system consisting of a 2.3 MW wind turbine and 2.61 MWp photovoltaic power plant are proposed for the network. Models based on k-Nearest Neighbors algorithms were developed for predicting the performances of these renewable energy systems at the network area. Based on the load profile, power flow analysis, and the predicted generation from solar and wind systems, a demand side management algorithm has been developed for the charge/discharge scheduling of the electric vehicles connected within the network. The basic objective of the algorithm is to maximize the renewable energy utilization by triggering the charging cycle during the periods of excess renewable energy generation. With an annual contribution of renewables is estimated as 12.61 GWh out of which 9.33 GWh is from wind and 3.29 GWh from solar. Wind from wind and solar energy systems, the proposed scheduling algorithm could contribute 71.56 percent of the charging load demand by the EVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
Antares发布了新的文献求助100
4秒前
Jack完成签到 ,获得积分10
4秒前
Sunziy完成签到,获得积分10
5秒前
yt完成签到 ,获得积分10
6秒前
若月画萤完成签到,获得积分10
7秒前
煲仔饭发布了新的文献求助10
8秒前
伶俐甜瓜发布了新的文献求助10
13秒前
memory完成签到,获得积分10
14秒前
jy完成签到 ,获得积分20
15秒前
上官若男应助贪玩的橘子采纳,获得10
16秒前
Smile发布了新的文献求助30
21秒前
21秒前
21秒前
山山完成签到 ,获得积分10
22秒前
李华完成签到 ,获得积分10
23秒前
12A完成签到,获得积分10
25秒前
Aurora发布了新的文献求助10
28秒前
无奈的灵松完成签到 ,获得积分20
30秒前
JY完成签到 ,获得积分20
30秒前
浮游应助科研通管家采纳,获得10
30秒前
30秒前
汉堡包应助科研通管家采纳,获得30
30秒前
GingerF应助科研通管家采纳,获得100
30秒前
浮游应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
小二完成签到,获得积分10
31秒前
痛痛痛完成签到,获得积分10
35秒前
化学之星完成签到,获得积分10
35秒前
qingsyxuan完成签到,获得积分10
36秒前
小圆圈发布了新的文献求助10
36秒前
小杨应助lhy采纳,获得10
38秒前
徐凤年完成签到,获得积分10
46秒前
48秒前
小油菜完成签到 ,获得积分10
50秒前
Adalwolf完成签到,获得积分10
50秒前
SciGPT应助娜娜采纳,获得30
51秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345477
求助须知:如何正确求助?哪些是违规求助? 4480424
关于积分的说明 13946213
捐赠科研通 4377929
什么是DOI,文献DOI怎么找? 2405477
邀请新用户注册赠送积分活动 1398087
关于科研通互助平台的介绍 1370475