Data driven approach for the management of wind and solar energy integrated electrical distribution network with high penetration of electric vehicles

可再生能源 光伏系统 风力发电 汽车工程 环境科学 电力系统 电力 分布式发电 工程类 电气工程 功率(物理) 物理 量子力学
作者
Manuel S. Mathew,Mohan Lal Kolhe,Surya Teja Kandukuri,Christian W. Omlin
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:421: 138467-138467 被引量:2
标识
DOI:10.1016/j.jclepro.2023.138467
摘要

With the increased penetration of fluctuating renewables and growing population of contemporary loads such as electric vehicles, the uncertainties in the generation and demand in the electric power grids are increasing. This makes the efficient operation and management of these systems challenging. Objective of this study is to propose a real-time management system for EV charging, which maximises the renewable energy utilization. An electric power distribution network with an average and peak demands of 1.51 MW, and 3.6 MW respectively, was chosen for the study. The real time power flow through the network components were analyzed using the OpenDSS model. With a wind power density of 574.51 W/m2 and a solar insolation of 4.14 kWh/m2/day, an optimized renewable energy system consisting of a 2.3 MW wind turbine and 2.61 MWp photovoltaic power plant are proposed for the network. Models based on k-Nearest Neighbors algorithms were developed for predicting the performances of these renewable energy systems at the network area. Based on the load profile, power flow analysis, and the predicted generation from solar and wind systems, a demand side management algorithm has been developed for the charge/discharge scheduling of the electric vehicles connected within the network. The basic objective of the algorithm is to maximize the renewable energy utilization by triggering the charging cycle during the periods of excess renewable energy generation. With an annual contribution of renewables is estimated as 12.61 GWh out of which 9.33 GWh is from wind and 3.29 GWh from solar. Wind from wind and solar energy systems, the proposed scheduling algorithm could contribute 71.56 percent of the charging load demand by the EVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃蜂蜜完成签到,获得积分10
刚刚
朴实纸飞机关注了科研通微信公众号
刚刚
情怀应助独特采白采纳,获得10
1秒前
2秒前
lll发布了新的文献求助10
3秒前
猫舍完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助yy采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
FKKKKSY应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
爱笑难摧发布了新的文献求助10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
小文发布了新的文献求助10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
tuanheqi应助科研通管家采纳,获得150
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
ho应助科研通管家采纳,获得10
9秒前
wang发布了新的文献求助10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
田様应助神勇朝雪采纳,获得10
9秒前
lalala应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
wczhang1999发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300369
求助须知:如何正确求助?哪些是违规求助? 4448262
关于积分的说明 13845572
捐赠科研通 4333969
什么是DOI,文献DOI怎么找? 2379255
邀请新用户注册赠送积分活动 1374403
关于科研通互助平台的介绍 1340056