Emerging applications of machine learning in genomic medicine and healthcare

人工智能 精密医学 个性化医疗 大数据 鉴定(生物学) 计算机科学 领域(数学) 基因组医学 人工智能应用 机器学习 数据科学 深度学习 生物信息学 医学 数据挖掘 计算生物学 生物 病理 数学 植物 纯数学
作者
Narjice Chafai,L. Bonizzi,Sara Botti,Bouabid Badaoui
出处
期刊:Critical Reviews in Clinical Laboratory Sciences [Informa]
卷期号:61 (2): 140-163 被引量:28
标识
DOI:10.1080/10408363.2023.2259466
摘要

AbstractThe integration of artificial intelligence technologies has propelled the progress of clinical and genomic medicine in recent years. The significant increase in computing power has facilitated the ability of artificial intelligence models to analyze and extract features from extensive medical data and images, thereby contributing to the advancement of intelligent diagnostic tools. Artificial intelligence (AI) models have been utilized in the field of personalized medicine to integrate clinical data and genomic information of patients. This integration allows for the identification of customized treatment recommendations, ultimately leading to enhanced patient outcomes. Notwithstanding the notable advancements, the application of artificial intelligence (AI) in the field of medicine is impeded by various obstacles such as the limited availability of clinical and genomic data, the diversity of datasets, ethical implications, and the inconclusive interpretation of AI models' results. In this review, a comprehensive evaluation of multiple machine learning algorithms utilized in the fields of clinical and genomic medicine is conducted. Furthermore, we present an overview of the implementation of artificial intelligence (AI) in the fields of clinical medicine, drug discovery, and genomic medicine. Finally, a number of constraints pertaining to the implementation of artificial intelligence within the healthcare industry are examined.Keywords: Genomic medicineclinical medicineartificial intelligencemachine learningdeep learning Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CBP发布了新的文献求助10
1秒前
科研通AI5应助KKIII采纳,获得10
1秒前
1秒前
xx发布了新的文献求助10
3秒前
sci_zt发布了新的文献求助10
4秒前
科研通AI5应助文刀采纳,获得30
4秒前
5秒前
xiao金完成签到,获得积分10
5秒前
6秒前
我忘记带刀了完成签到,获得积分20
10秒前
科研通AI5应助asd采纳,获得10
10秒前
Jonsnow发布了新的文献求助10
10秒前
aprilchristian完成签到,获得积分10
11秒前
12秒前
hhh发布了新的文献求助10
12秒前
打打应助MM采纳,获得10
13秒前
Eirrr完成签到,获得积分10
13秒前
完美世界应助努力学习采纳,获得10
14秒前
哈哈完成签到 ,获得积分10
14秒前
14秒前
科研通AI5应助机灵的秋凌采纳,获得10
15秒前
吴媛媛完成签到 ,获得积分10
16秒前
芒果完成签到 ,获得积分10
16秒前
ZengJuan发布了新的文献求助30
16秒前
17秒前
CBP完成签到,获得积分10
17秒前
慕青应助跳跃妙彤采纳,获得10
18秒前
18秒前
文刀发布了新的文献求助30
18秒前
18秒前
Gxt完成签到,获得积分10
19秒前
所所应助Eirrr采纳,获得10
19秒前
英俊的铭应助酸梅汤采纳,获得10
21秒前
22秒前
科研通AI5应助hhh采纳,获得10
23秒前
Rita完成签到,获得积分10
24秒前
zakary发布了新的文献求助10
24秒前
小林太郎应助WSZXQ采纳,获得20
26秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546412
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355739
捐赠科研通 2822124
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723287
科研通“疑难数据库(出版商)”最低求助积分说明 713690