Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning

蠕动 材料科学 高温合金 钛合金 卷积神经网络 学习迁移 航空航天 变形(气象学) 合金 服务(商务) 使用寿命 预测建模 冶金 人工智能 机器学习 计算机科学 复合材料 经济 政治学 经济 法学
作者
Changlu Zhou,Ruihao Yuan,Baolong Su,Jiangkun Fan,Bin Tang,Pingxiang Zhang,Jinshan Li
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:178: 39-47 被引量:15
标识
DOI:10.1016/j.jmst.2023.08.046
摘要

High-temperature titanium alloys are the key materials for the components in aerospace and their service life depends largely on creep deformation-induced failure. However, the prediction of creep rupture life remains a challenge due to the lack of available data with well-characterized target property. Here, we proposed two cross-materials transfer learning (TL) strategies to improve the prediction of creep rupture life of high-temperature titanium alloys. Both strategies effectively utilized the knowledge or information encoded in the large dataset (753 samples) of Fe-base, Ni-base, and Co-base superalloys to enhance the surrogate model for small dataset (88 samples) of high-temperature titanium alloys. The first strategy transferred the parameters of the convolutional neural network while the second strategy fused the two datasets. The performances of the TL models were demonstrated on different test datasets with varying sizes outside the training dataset. Our TL models improved the predictions greatly compared to the models obtained by straightly applying five commonly employed algorithms on high-temperature titanium alloys. This work may stimulate the use of TL-based models to accurately predict the service properties of structural materials where the available data is small and sparse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助韦一手采纳,获得10
刚刚
量子星尘发布了新的文献求助50
1秒前
qqq发布了新的文献求助20
1秒前
1秒前
zoe发布了新的文献求助10
1秒前
1秒前
1秒前
ayin2333完成签到,获得积分10
1秒前
iiiiheuns完成签到,获得积分10
2秒前
狂野的蜡烛应助weixiao采纳,获得10
2秒前
aspen完成签到,获得积分10
2秒前
甜蜜咖啡豆完成签到,获得积分10
3秒前
cgjj完成签到,获得积分20
3秒前
汉堡包应助Zephyr采纳,获得10
4秒前
4秒前
田様应助大号采纳,获得10
4秒前
5秒前
Jeriu完成签到,获得积分10
5秒前
舒心谷雪完成签到 ,获得积分10
5秒前
aspen发布了新的文献求助10
5秒前
5秒前
Hello应助科研狂徒采纳,获得10
5秒前
maomao发布了新的文献求助30
5秒前
6秒前
传奇3应助张磊采纳,获得10
6秒前
淡定映之完成签到,获得积分20
6秒前
6秒前
鸽子完成签到,获得积分10
7秒前
7秒前
7秒前
明哲派完成签到,获得积分10
7秒前
124完成签到,获得积分10
7秒前
8秒前
waddles完成签到,获得积分10
8秒前
8秒前
LJ发布了新的文献求助10
8秒前
年轻丸子完成签到,获得积分10
8秒前
9秒前
latheriny完成签到,获得积分10
9秒前
zyj完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355