Exploiting Multi-Scale Parallel Self-Attention and Local Variation via Dual-Branch Transformer-CNN Structure for Face Super-Resolution

计算机科学 人工智能 变压器 模式识别(心理学) 对偶(语法数字) 面子(社会学概念) 电压 社会科学 量子力学 物理 文学类 艺术 社会学
作者
Jingang Shi,Yusi Wang,Zitong Yu,Guanxin Li,Xiaopeng Hong,Fei Wang,Yihong Gong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2608-2620 被引量:22
标识
DOI:10.1109/tmm.2023.3301225
摘要

Recently, deep learning technique has been widely employed to deal with face super-resolution (FSR) problem. It aims to predict the nonlinear relationship between the low-resolution (LR) face images and corresponding high-resolution (HR) ones, which could recover the high-frequency details from the LR degraded textures. However, either CNN-based or Transformer-based approaches mostly enhance the details by exploiting the relationship of local pixels or patches on LR features, the nonlocal features are not fully taken into account for producing high-frequency textures. To improve the above problem, we design a novel dual-branch module which consists of Transformer and CNN respectively. The Transformer branch extracts multiple scale feature embeddings and explores local and nonlocal self-attention simultaneously. Thus, the parallel self-attention mechanism has superior capabilities to capture the local and nonlocal dependencies on face image in the face reconstruction. Furthermore, the traditional CNNs usually extract features by combining pixels in a local convolutional kernel, it may be not effective to recover lost high-frequency details since the variations of local pixels are not well measured, which is important in recovering vivid edges and contours. To this end, we propose the local variation based attention block on the CNN branch, which could enhance the capabilities by directly extracting features from the variation of neighboring pixels. Finally, the Transformer-branch and CNN-branch are combined together by the modulation block to fuse both nonlocal and local advantages from two branches. Experimental results demonstrate the effectiveness of the proposed method when compared with state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柯柯完成签到,获得积分10
1秒前
访云完成签到 ,获得积分10
1秒前
thanhmanhp完成签到,获得积分10
1秒前
pluto应助Yjj采纳,获得10
1秒前
1秒前
lll完成签到,获得积分10
2秒前
Kypsi完成签到,获得积分10
2秒前
和成完成签到,获得积分10
3秒前
所所应助文心雕龙采纳,获得10
3秒前
3秒前
尛瞐慶成完成签到,获得积分10
4秒前
shirley完成签到,获得积分10
4秒前
4秒前
lpt完成签到 ,获得积分10
4秒前
万能图书馆应助fwz采纳,获得10
5秒前
歪歪yyyyc完成签到,获得积分10
5秒前
丹dan完成签到,获得积分10
5秒前
shiqiang mu应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
xjcy应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
爆爆不是金克丝完成签到,获得积分10
5秒前
在水一方应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
xjcy应助科研通管家采纳,获得10
6秒前
研友_5Z4ZA5完成签到,获得积分10
6秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
外Y发布了新的文献求助10
6秒前
和成发布了新的文献求助10
7秒前
7秒前
8秒前
sos完成签到,获得积分10
8秒前
8秒前
肥鹏完成签到,获得积分10
9秒前
又声完成签到,获得积分10
9秒前
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899231
关于积分的说明 8304717
捐赠科研通 2568521
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630725