亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting Multi-Scale Parallel Self-Attention and Local Variation via Dual-Branch Transformer-CNN Structure for Face Super-Resolution

计算机科学 人工智能 变压器 模式识别(心理学) 对偶(语法数字) 面子(社会学概念) 电压 社会科学 量子力学 物理 文学类 艺术 社会学
作者
Jingang Shi,Yusi Wang,Zitong Yu,Guanxin Li,Xiaopeng Hong,Fei Wang,Yihong Gong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2608-2620 被引量:30
标识
DOI:10.1109/tmm.2023.3301225
摘要

Recently, deep learning technique has been widely employed to deal with face super-resolution (FSR) problem. It aims to predict the nonlinear relationship between the low-resolution (LR) face images and corresponding high-resolution (HR) ones, which could recover the high-frequency details from the LR degraded textures. However, either CNN-based or Transformer-based approaches mostly enhance the details by exploiting the relationship of local pixels or patches on LR features, the nonlocal features are not fully taken into account for producing high-frequency textures. To improve the above problem, we design a novel dual-branch module which consists of Transformer and CNN respectively. The Transformer branch extracts multiple scale feature embeddings and explores local and nonlocal self-attention simultaneously. Thus, the parallel self-attention mechanism has superior capabilities to capture the local and nonlocal dependencies on face image in the face reconstruction. Furthermore, the traditional CNNs usually extract features by combining pixels in a local convolutional kernel, it may be not effective to recover lost high-frequency details since the variations of local pixels are not well measured, which is important in recovering vivid edges and contours. To this end, we propose the local variation based attention block on the CNN branch, which could enhance the capabilities by directly extracting features from the variation of neighboring pixels. Finally, the Transformer-branch and CNN-branch are combined together by the modulation block to fuse both nonlocal and local advantages from two branches. Experimental results demonstrate the effectiveness of the proposed method when compared with state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
2秒前
MLS8620应助aa采纳,获得10
6秒前
HuiHui完成签到,获得积分10
8秒前
李健应助RAIN采纳,获得10
12秒前
yx_cheng应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
自然芷文完成签到,获得积分10
26秒前
雨过天晴完成签到,获得积分10
28秒前
30秒前
34秒前
雨过天晴发布了新的文献求助10
35秒前
38秒前
tlh完成签到 ,获得积分10
38秒前
51秒前
自信寻真发布了新的文献求助10
58秒前
亭2007完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
英姑应助shaojie采纳,获得10
1分钟前
1分钟前
七月流火应助Walter采纳,获得10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
乐乐应助wyx采纳,获得10
3分钟前
3分钟前
ZXRGXY完成签到 ,获得积分10
3分钟前
希波克拉底完成签到,获得积分10
3分钟前
4分钟前
shaojie发布了新的文献求助10
4分钟前
千里草完成签到,获得积分10
4分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
执着乐双发布了新的文献求助10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008067
求助须知:如何正确求助?哪些是违规求助? 3547878
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188