Energy management supported on genetic algorithms for the equalization of battery energy storage systems in microgrid systems

微电网 均衡(音频) 备份 能源管理 遗传算法 储能 计算机科学 电池(电) MATLAB语言 网格 能源消耗 可再生能源 能量(信号处理) 能源管理系统 可靠性工程 工程类 电气工程 算法 功率(物理) 统计 解码方法 物理 数学 几何学 量子力学 数据库 机器学习 操作系统
作者
Calloquispe Huallpa Ricardo,Adriana C. Luna,Nelson L. Díaz
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108510-108510
标识
DOI:10.1016/j.est.2023.108510
摘要

Energy management plays a fundamental role in ensuring the optimal operation of a microgrid (MG). Since MGs rely heavily on renewable energy sources, having batteries provides a reliable backup. Equalization is important when using batteries in an MG, ensuring their health and prolonging their lifetime. Due to the use of batteries in electric vehicles, they can be considered mobile sources that support energy management in an MG. Two methodologies are presented in this paper for the process of equalization and energy management that seeks to minimize grid usage. The first one prioritizes equalization, performing it quickly but slightly sacrificing grid usage. The second methodology focuses on slow equalization while prioritizing energy management, thereby reducing overall costs. The optimization was performed using a genetic algorithm that evaluates the MG parameters and as a result, provides the optimal current that each battery in the MG must deliver. Two case studies in MATLAB and Simulink are presented to demonstrate the effectiveness of the proposed optimizations. The results showed that both methods allow for achieving energy management and equalization in an MG without compromising its optimal operation. With the first method, equalization was achieved in 29 s with a consumption of 47 kW*s from the grid, while with the second method, equalization was obtained in 110 s with no energy consumption from the grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干饭闪电狼完成签到,获得积分10
刚刚
YUZU完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
pcx完成签到,获得积分10
2秒前
phd完成签到,获得积分10
3秒前
3秒前
曹志毅完成签到,获得积分10
3秒前
mito发布了新的文献求助10
4秒前
无悔呀发布了新的文献求助10
4秒前
5秒前
君君发布了新的文献求助10
5秒前
Yang完成签到,获得积分10
6秒前
风雨完成签到,获得积分10
6秒前
6秒前
7秒前
彭于晏应助小西采纳,获得30
7秒前
可爱的函函应助布布采纳,获得10
8秒前
9秒前
轩辕德地发布了新的文献求助10
9秒前
nine发布了新的文献求助30
9秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
10秒前
JamesPei应助小敦采纳,获得10
10秒前
今非发布了新的文献求助10
10秒前
李健的小迷弟应助通~采纳,获得30
10秒前
10秒前
10秒前
fanfan44390发布了新的文献求助10
10秒前
Zhang完成签到,获得积分10
11秒前
小二郎应助小田采纳,获得10
12秒前
12秒前
隐形曼青应助liike采纳,获得10
12秒前
phd发布了新的文献求助10
12秒前
12秒前
dingdong发布了新的文献求助30
12秒前
Orange应助清秀的语山采纳,获得50
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794