Progressive knowledge tracing: Modeling learning process from abstract to concrete

可解释性 计算机科学 追踪 过程(计算) 人工智能 操作系统
作者
Jianwen Sun,Mengqi Wei,Jintian Feng,Fenghua Yu,Qing Li,Rui Zou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122280-122280 被引量:9
标识
DOI:10.1016/j.eswa.2023.122280
摘要

Artificial intelligence has the potential to revolutionize education by providing personalized learning experiences that support the dream of "teaching students according to their aptitude". Knowledge tracing (KT) is a critical research topic in intelligent education and is a powerful tool for achieving AI-assisted education. Both the learning process and the response result are important for KT. However, existing KT methods rarely employ a stage-based modeling approach to dissect the learning process. We propose Progressive Knowledge Tracing (PKT), which models the learning process in stages. PKT decomposes the learning process into three relatively independent but progressively related stages: concept mastery, question solving, and answering behavior. Inspired by constructivist learning theory and item response theory, PKT incorporates interpretable parameters with educational significance. Compared with existing KT methods, this staged modeling method that integrates educational theory has more reasonable interpretability. Experiments on six real-world datasets demonstrate that PKT outperforms baseline methods. Several experiments show that PKT reasonably models the learning process. For example, it more reasonably estimates the trend of concept mastery over time, analyzes the reasons why learners make mistakes on specific questions, and provides estimates of question difficulty that are closer to reality. We also find the intuitive phenomenon that the difficulty of a question is positively correlated with the number of associated concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习发布了新的文献求助10
刚刚
cc发布了新的文献求助10
1秒前
533完成签到,获得积分20
1秒前
科研通AI5应助yx采纳,获得10
1秒前
2秒前
koi发布了新的文献求助10
2秒前
浦肯野应助湖月照我影采纳,获得30
2秒前
2秒前
陈博士完成签到,获得积分10
3秒前
Citrus完成签到,获得积分10
4秒前
费老三发布了新的文献求助30
4秒前
华仔应助chenjyuu采纳,获得10
4秒前
4秒前
最最最发布了新的文献求助10
4秒前
4秒前
Tuesday完成签到 ,获得积分10
5秒前
5秒前
6秒前
阿毛发布了新的文献求助10
7秒前
8秒前
情怀应助灵巧荆采纳,获得10
8秒前
Ll发布了新的文献求助10
8秒前
Peter发布了新的文献求助30
9秒前
9秒前
10秒前
科研韭菜发布了新的文献求助10
10秒前
科研通AI5应助爱学习采纳,获得10
10秒前
科研通AI5应助跳跃的太阳采纳,获得10
10秒前
苏尔琳诺完成签到,获得积分10
10秒前
科研通AI5应助a1oft采纳,获得10
11秒前
11秒前
关关过完成签到,获得积分10
11秒前
呢不辣完成签到,获得积分10
11秒前
11秒前
shi hui应助陈博士采纳,获得10
11秒前
11秒前
糖糖关注了科研通微信公众号
12秒前
12秒前
小恶于完成签到 ,获得积分10
12秒前
科研通AI2S应助落晨采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762