Progressive knowledge tracing: Modeling learning process from abstract to concrete

可解释性 计算机科学 追踪 过程(计算) 人工智能 操作系统
作者
Jianwen Sun,Mengqi Wei,Jintian Feng,Fenghua Yu,Qing Li,Rui Zou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122280-122280 被引量:9
标识
DOI:10.1016/j.eswa.2023.122280
摘要

Artificial intelligence has the potential to revolutionize education by providing personalized learning experiences that support the dream of "teaching students according to their aptitude". Knowledge tracing (KT) is a critical research topic in intelligent education and is a powerful tool for achieving AI-assisted education. Both the learning process and the response result are important for KT. However, existing KT methods rarely employ a stage-based modeling approach to dissect the learning process. We propose Progressive Knowledge Tracing (PKT), which models the learning process in stages. PKT decomposes the learning process into three relatively independent but progressively related stages: concept mastery, question solving, and answering behavior. Inspired by constructivist learning theory and item response theory, PKT incorporates interpretable parameters with educational significance. Compared with existing KT methods, this staged modeling method that integrates educational theory has more reasonable interpretability. Experiments on six real-world datasets demonstrate that PKT outperforms baseline methods. Several experiments show that PKT reasonably models the learning process. For example, it more reasonably estimates the trend of concept mastery over time, analyzes the reasons why learners make mistakes on specific questions, and provides estimates of question difficulty that are closer to reality. We also find the intuitive phenomenon that the difficulty of a question is positively correlated with the number of associated concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天发布了新的文献求助50
1秒前
ww发布了新的文献求助10
1秒前
小白发布了新的文献求助10
1秒前
懂个锤子发布了新的文献求助10
1秒前
qian发布了新的文献求助10
2秒前
张子烜完成签到,获得积分10
2秒前
初心完成签到 ,获得积分10
3秒前
3秒前
科研通AI5应助飞快的尔芙采纳,获得30
3秒前
Ting完成签到,获得积分10
5秒前
所所应助伯赏尔云采纳,获得10
5秒前
SciGPT应助liu1109采纳,获得10
7秒前
SciGPT应助传统学院派采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
完美世界应助卑微学术人采纳,获得10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
松园112完成签到,获得积分10
9秒前
mg应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
等待冬亦应助科研通管家采纳,获得20
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
田様应助hbc采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
一一应助科研通管家采纳,获得10
9秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842288
求助须知:如何正确求助?哪些是违规求助? 3384399
关于积分的说明 10534504
捐赠科研通 3104830
什么是DOI,文献DOI怎么找? 1709838
邀请新用户注册赠送积分活动 823410
科研通“疑难数据库(出版商)”最低求助积分说明 774050