炎症体
神经炎症
莫里斯水上航行任务
TLR4型
内分泌学
内科学
高脂血症
药理学
医学
化学
受体
炎症
海马体
糖尿病
作者
Hao Yang,Ruijuan Song,Yisha Xie,Qingfan Qian,Zhengli Wu,Shufen Han,Xinli Li
标识
DOI:10.1021/acs.jafc.3c01966
摘要
Although studies have supported the beneficial effects of the ingredients of apple polyphenol extract (APE), a polyphenol mixture being extracted from whole fresh apples, on neurodegenerative diseases, the role of APE in atherosclerosis-related cognitive impairment remains unclear. To clarify the role of APE in regulating cognitive dysfunction in mice with atherosclerosis and the underlying mechanisms, high-fat/cholesterol diet-fed male LDLR-/- mice were gavaged with 125 or 500 mg/(kg·bw·d) APE solution or sterile double-distilled water for consecutive 8 weeks, and age-matched C57BL/6 male mice were employed as normal control. APE intervention increased the serum concentration of high-density apolipoprotein cholesterol, improved atherosclerosis, and ameliorated cognitive function of mice by inhibiting the phosphorylation of tau protein, supporting with significantly reduced platform latency and obviously increased swimming distance in the target quadrant according to the Morris water maze test. APE intervention alleviated neuroinflammation by attenuating the activation of microglia and astrocytes and inhibiting TLR4 signaling with reduced protein expression of NF-κB, MyD88, TRIF, and IKKβ. Meanwhile, APE intervention inactivated NLRP3 inflammasome with downregulated protein expression of caspase-1, IL-18, and IL-1β. Additionally, APE intervention improved the damaged brain barrier structure by upregulating the protein expression of ZO-1 and occludin. Therefore, our research supplemented new data, supporting the potential of APE as an effective dietary bioactive ingredient to improve atherosclerosis and associated cognitive impairment.
科研通智能强力驱动
Strongly Powered by AbleSci AI