Intelligent upgrade of waste-activated sludge dewatering process based on artificial neural network model: Core influential factor identification and non-experimental prediction of sludge dewatering performance

脱水 人工神经网络 均方误差 工艺工程 过程(计算) 工程类 生化工程 计算机科学 人工智能 数学 统计 岩土工程 操作系统
作者
Hewei Li,Chunjiang Li,Kun Zhou,Wei Ye,Yufei Lu,Boran Wu,Xiaohu Dai,Boran Wu
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:346: 118968-118968
标识
DOI:10.1016/j.jenvman.2023.118968
摘要

Owing to the extremely complex compositions and origins of waste-activated sludge (WAS), the multiple physiochemical properties of WAS have impacts on its dewaterability, and there is a complex interaction relationship among the multiple physiochemical properties, which makes it difficult to identify the controlling factors on WAS dewaterability. Accordingly, there is still no unified certainty in the appropriate ranges of physiochemical properties for the optimal dewaterability of sludge from different sources, resulting in a lack of clear theoretical basis for technical selection and optimization of sludge dewatering processes. The large consumption of conditioning chemicals and low process efficiency stand for the major deficiency of existing sludge conditioning technologies. This study proposed to use a non-linear, adaptive and self-organizing artificial neural network (ANN) model to integrate the multiple physiochemical properties of WAS affecting its dewaterability, and WAS dewatering performance under certain conditioning schemes could be predicated by ANN model with the multiple physiochemical properties and conditioning operation parameters as the input arguments. Thus, the laborious filtration experiments for screening conditioning chemicals could be replaced by the input adjustment of ANN model. Rooted mean squared error (RMSE) of 6.51 and coefficient of determination (R2) of 0.73 confirmed the satisfied stability and accuracy of established ANN model. Furthermore, the predictor-exclusive method revealed that the exclusion of polar interface free energy decreased most, which reflected the importance of surface hydrophilicity reduction in sludge dewaterability improvement. All the contributions presented here were believed to provide an intelligent insight to improve the experience operation status of WAS dewatering process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助晨曦采纳,获得10
1秒前
0128lun发布了新的文献求助10
1秒前
phd发布了新的文献求助10
2秒前
君无名完成签到 ,获得积分10
2秒前
经年发布了新的文献求助10
2秒前
QXR完成签到,获得积分10
3秒前
豆dou完成签到,获得积分10
3秒前
Dddd发布了新的文献求助10
3秒前
HCl完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
Hollen完成签到 ,获得积分10
7秒前
慕青应助学术蠕虫采纳,获得10
8秒前
8秒前
叶子发布了新的文献求助10
9秒前
orangel完成签到,获得积分10
10秒前
半壶月色半边天完成签到 ,获得积分10
11秒前
tmpstlml发布了新的文献求助10
11秒前
12秒前
12秒前
不安饼干完成签到 ,获得积分10
14秒前
活泼的飞鸟完成签到,获得积分10
14秒前
15秒前
xuyun发布了新的文献求助10
15秒前
15秒前
zzcres完成签到,获得积分10
17秒前
eeeee完成签到 ,获得积分10
17秒前
乐观德地完成签到,获得积分10
18秒前
大个应助yf_zhu采纳,获得10
18秒前
llk发布了新的文献求助10
19秒前
一只大肥猫完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808