Intelligent upgrade of waste-activated sludge dewatering process based on artificial neural network model: Core influential factor identification and non-experimental prediction of sludge dewatering performance

脱水 人工神经网络 均方误差 工艺工程 过程(计算) 工程类 生化工程 计算机科学 人工智能 数学 统计 岩土工程 操作系统
作者
Hewei Li,Chunjiang Li,Kun Zhou,Wei Ye,Yufei Lu,Boran Wu,Xiaohu Dai,Boran Wu
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:346: 118968-118968
标识
DOI:10.1016/j.jenvman.2023.118968
摘要

Owing to the extremely complex compositions and origins of waste-activated sludge (WAS), the multiple physiochemical properties of WAS have impacts on its dewaterability, and there is a complex interaction relationship among the multiple physiochemical properties, which makes it difficult to identify the controlling factors on WAS dewaterability. Accordingly, there is still no unified certainty in the appropriate ranges of physiochemical properties for the optimal dewaterability of sludge from different sources, resulting in a lack of clear theoretical basis for technical selection and optimization of sludge dewatering processes. The large consumption of conditioning chemicals and low process efficiency stand for the major deficiency of existing sludge conditioning technologies. This study proposed to use a non-linear, adaptive and self-organizing artificial neural network (ANN) model to integrate the multiple physiochemical properties of WAS affecting its dewaterability, and WAS dewatering performance under certain conditioning schemes could be predicated by ANN model with the multiple physiochemical properties and conditioning operation parameters as the input arguments. Thus, the laborious filtration experiments for screening conditioning chemicals could be replaced by the input adjustment of ANN model. Rooted mean squared error (RMSE) of 6.51 and coefficient of determination (R2) of 0.73 confirmed the satisfied stability and accuracy of established ANN model. Furthermore, the predictor-exclusive method revealed that the exclusion of polar interface free energy decreased most, which reflected the importance of surface hydrophilicity reduction in sludge dewaterability improvement. All the contributions presented here were believed to provide an intelligent insight to improve the experience operation status of WAS dewatering process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
簌落发布了新的文献求助10
刚刚
HBin完成签到,获得积分10
刚刚
农大彭于晏完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
hucchongzi发布了新的文献求助10
4秒前
伍绮彤完成签到,获得积分10
5秒前
Soche发布了新的文献求助10
5秒前
cincrady完成签到,获得积分10
6秒前
hh发布了新的文献求助20
6秒前
戴遇好完成签到 ,获得积分0
6秒前
7秒前
8秒前
拼搏起眸发布了新的文献求助10
8秒前
8秒前
8秒前
小胡完成签到,获得积分10
9秒前
11秒前
高贵子骞完成签到,获得积分10
11秒前
木从完成签到 ,获得积分10
12秒前
hhhh完成签到,获得积分10
12秒前
12秒前
12秒前
松溪乾完成签到,获得积分10
13秒前
肉肉发布了新的文献求助10
13秒前
13秒前
杰克李李发布了新的文献求助10
14秒前
科研通AI2S应助hua采纳,获得10
15秒前
amongferns发布了新的文献求助10
15秒前
文心雕龙完成签到,获得积分10
15秒前
思源应助469459442采纳,获得10
15秒前
木小小完成签到,获得积分10
16秒前
小松鼠完成签到 ,获得积分10
16秒前
LaInh完成签到,获得积分10
16秒前
星河zp发布了新的文献求助30
18秒前
panfan发布了新的文献求助10
18秒前
Ava应助熊猫采纳,获得10
19秒前
卤味狮子头完成签到,获得积分10
20秒前
弓离弦完成签到,获得积分10
20秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085592
求助须知:如何正确求助?哪些是违规求助? 2738468
关于积分的说明 7550210
捐赠科研通 2388277
什么是DOI,文献DOI怎么找? 1266354
科研通“疑难数据库(出版商)”最低求助积分说明 613456
版权声明 598591