An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients

弥漫性大B细胞淋巴瘤 正电子发射断层摄影术 医学 核医学 淋巴瘤 国际预后指标 放射科 内科学
作者
Maria C. Ferrández,Sandeep S.V. Golla,Jakoba J. Eertink,Bart M. de Vries,Pieternella J. Lugtenburg,Sanne E. Wiegers,Gerben J.C. Zwezerijnen,Simone Pieplenbosch,Lars Kurch,Andreas Hüttmann,Christine Hanoun,Ulrich Dührsen,Henrica C. W. de Vet,Otto S. Hoekstra,Coreline N. Burggraaff,Annelies Bes,Martijn W. Heymans,Yvonne W. S. Jauw,Martine E.D. Chamuleau,Sally F. Barrington,G. Mikhaeel,Emanuele Zucca,Luca Ceriani,Robert Carr,Tamás Györke,Sándor Czibor,Stefano Fanti,Lale Kostakoğlu,Annika Loft,Martin Hutchings,Sze Ting Lee,Josée M. Zijlstra,Ronald Boellaard
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:1
标识
DOI:10.1038/s41598-023-40218-1
摘要

Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL 18F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmaxbulk was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奥特曼发布了新的文献求助10
2秒前
孔难破完成签到,获得积分10
2秒前
毛豆应助jinzhen采纳,获得10
3秒前
hzw应助金发大猪脚采纳,获得10
3秒前
情怀应助英俊奇异果采纳,获得10
4秒前
Mr.Young发布了新的文献求助10
4秒前
5秒前
星光熠熠发布了新的文献求助10
5秒前
7秒前
7秒前
小戴小戴十分可爱关注了科研通微信公众号
7秒前
7秒前
奥特曼完成签到,获得积分10
7秒前
充电宝应助阳光的晓刚采纳,获得10
8秒前
Denny1233完成签到,获得积分10
9秒前
爱科研的琪琪完成签到,获得积分10
9秒前
9秒前
栗子栗栗子完成签到,获得积分10
10秒前
Nan发布了新的文献求助10
10秒前
10秒前
10秒前
Lime发布了新的文献求助10
10秒前
123发布了新的文献求助10
11秒前
王青文应助科学家采纳,获得10
11秒前
11秒前
12秒前
quan完成签到 ,获得积分10
12秒前
万能图书馆应助冬三月采纳,获得10
12秒前
wang发布了新的文献求助10
13秒前
科研通AI2S应助王轶华采纳,获得30
13秒前
Ava应助甜甜芾采纳,获得30
14秒前
Liu发布了新的文献求助10
15秒前
烟花应助机灵飞珍采纳,获得10
16秒前
笑颜发布了新的文献求助10
17秒前
爆米花应助哈哈采纳,获得10
18秒前
尊敬的青易关注了科研通微信公众号
18秒前
Orange应助马婷婷采纳,获得10
19秒前
895_应助追寻澜采纳,获得10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309117
求助须知:如何正确求助?哪些是违规求助? 2942485
关于积分的说明 8509235
捐赠科研通 2617584
什么是DOI,文献DOI怎么找? 1430190
科研通“疑难数据库(出版商)”最低求助积分说明 664086
邀请新用户注册赠送积分活动 649251