亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 量子力学 操作系统 物理
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
icoo完成签到,获得积分10
26秒前
38秒前
50秒前
52秒前
肖肖发布了新的文献求助10
57秒前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
肖肖完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助爱笑的傲晴采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助lemon采纳,获得30
2分钟前
2分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
hahha发布了新的文献求助10
3分钟前
3分钟前
圆圆901234发布了新的文献求助10
3分钟前
英俊的铭应助hahha采纳,获得10
3分钟前
3分钟前
LHL完成签到,获得积分10
3分钟前
LeslieHu发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316