Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 量子力学 操作系统 物理
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助lokiyyy采纳,获得10
刚刚
传奇3应助twotwomi采纳,获得10
刚刚
boging完成签到 ,获得积分10
1秒前
mumumu发布了新的文献求助30
2秒前
1234567完成签到,获得积分20
2秒前
lic关闭了lic文献求助
2秒前
2秒前
SciGPT应助生动从丹采纳,获得10
3秒前
3秒前
何倩发布了新的文献求助10
4秒前
5秒前
对掏大王发布了新的文献求助10
6秒前
bearbiscuit完成签到,获得积分10
6秒前
6秒前
Bgeelyu完成签到,获得积分10
7秒前
Qingyong21应助cara采纳,获得40
7秒前
酒剑仙完成签到,获得积分10
9秒前
9秒前
布林发布了新的文献求助30
9秒前
缓慢的以山关注了科研通微信公众号
11秒前
然大宝发布了新的文献求助10
12秒前
15秒前
王来敏完成签到,获得积分10
15秒前
17秒前
19秒前
赵顺勇完成签到,获得积分10
19秒前
20秒前
20秒前
华仔应助科研通管家采纳,获得10
22秒前
tiptip应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得30
22秒前
李爱国应助张莜莜采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
23秒前
OU应助科研通管家采纳,获得10
23秒前
来日昭昭应助科研通管家采纳,获得10
23秒前
蓝天应助科研通管家采纳,获得10
23秒前
wei完成签到,获得积分10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700