Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 物理 量子力学 操作系统
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助yiyu采纳,获得10
刚刚
田様应助tutu采纳,获得10
刚刚
干净初雪完成签到,获得积分10
1秒前
天玄一刀完成签到,获得积分10
1秒前
孟123发布了新的文献求助10
1秒前
rio完成签到 ,获得积分10
2秒前
Jasper应助顾晓采纳,获得10
2秒前
彩色囧完成签到,获得积分20
2秒前
baize完成签到,获得积分10
2秒前
3秒前
mahliya完成签到,获得积分10
4秒前
4秒前
杨紫琴完成签到,获得积分10
4秒前
4秒前
tianliyan完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
共享精神应助生动青文采纳,获得20
6秒前
小丸子完成签到,获得积分20
6秒前
大个应助高贵水壶采纳,获得10
6秒前
秋酿发布了新的文献求助30
7秒前
8秒前
开心薯片发布了新的文献求助10
8秒前
xiaolinsang完成签到,获得积分10
8秒前
上官若男应助peng采纳,获得10
9秒前
呢喃完成签到 ,获得积分10
9秒前
FashionBoy应助滕达采纳,获得10
9秒前
Ava应助jingzhang采纳,获得10
9秒前
10秒前
10秒前
10秒前
开心涵菡发布了新的文献求助10
10秒前
大兵发布了新的文献求助10
11秒前
11秒前
11秒前
诸葛烤鸭发布了新的文献求助10
11秒前
Sunny完成签到,获得积分10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295048
求助须知:如何正确求助?哪些是违规求助? 2931132
关于积分的说明 8450429
捐赠科研通 2603659
什么是DOI,文献DOI怎么找? 1421217
科研通“疑难数据库(出版商)”最低求助积分说明 660854
邀请新用户注册赠送积分活动 643708