Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 物理 量子力学 操作系统
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwn完成签到,获得积分10
刚刚
zhuzhu完成签到,获得积分0
刚刚
丘比特应助彩色的蓝天采纳,获得10
刚刚
ChoccyPasta完成签到,获得积分10
1秒前
1秒前
感动的冬云完成签到,获得积分10
1秒前
嘤嘤嘤发布了新的文献求助10
2秒前
wuhaixia完成签到,获得积分10
2秒前
正版DY完成签到,获得积分10
2秒前
333发布了新的文献求助10
2秒前
醒醒发布了新的文献求助10
2秒前
xfxx发布了新的文献求助10
3秒前
Sissi完成签到 ,获得积分10
3秒前
校长完成签到,获得积分20
3秒前
尼亚吉拉完成签到,获得积分10
3秒前
3秒前
布布发布了新的文献求助10
3秒前
Zhang发布了新的文献求助10
4秒前
qinqin发布了新的文献求助10
5秒前
顾夏包发布了新的文献求助30
5秒前
钰宁发布了新的文献求助10
5秒前
NexusExplorer应助ZZZ采纳,获得10
6秒前
7秒前
顺心书琴完成签到,获得积分10
7秒前
习习应助Nifeng采纳,获得10
7秒前
mrmrer发布了新的文献求助10
7秒前
9秒前
MUSTer一一完成签到 ,获得积分10
9秒前
通通通完成签到,获得积分10
9秒前
9秒前
务实的菓完成签到 ,获得积分10
10秒前
似水流年完成签到,获得积分10
10秒前
An慧完成签到,获得积分10
10秒前
Hello应助阿金采纳,获得10
10秒前
10秒前
10秒前
12秒前
顾夏包完成签到,获得积分10
12秒前
小土豆发布了新的文献求助50
13秒前
科研通AI5应助跑在颖采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794