Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 量子力学 操作系统 物理
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
风之子发布了新的文献求助10
3秒前
动听的凌旋完成签到,获得积分10
3秒前
清脆靳发布了新的文献求助10
4秒前
4秒前
4秒前
蜻蜓队长前来报道7完成签到,获得积分10
5秒前
xiaoxiao完成签到,获得积分10
5秒前
干净寻冬应助小冯采纳,获得10
5秒前
WW发布了新的文献求助10
7秒前
guo发布了新的文献求助10
7秒前
顺利一江完成签到 ,获得积分10
8秒前
Lucas应助朱小燕采纳,获得10
8秒前
9秒前
小蘑菇应助happy_qingming采纳,获得10
9秒前
9秒前
领导范儿应助勇哥你好采纳,获得10
9秒前
10秒前
10秒前
10秒前
舒适一手完成签到,获得积分10
12秒前
yar应助冷静机器猫采纳,获得10
12秒前
Ava应助laolaolao采纳,获得10
12秒前
taimeili发布了新的文献求助10
13秒前
14秒前
充电宝应助weihua采纳,获得10
16秒前
16秒前
小白发布了新的文献求助10
16秒前
CipherSage应助zzacc采纳,获得10
16秒前
17秒前
19秒前
窦白梦完成签到,获得积分10
19秒前
归尘发布了新的文献求助10
19秒前
19秒前
20秒前
嘟嘟图图发布了新的文献求助20
20秒前
无限一凤完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637632
求助须知:如何正确求助?哪些是违规求助? 4743709
关于积分的说明 14999836
捐赠科研通 4795711
什么是DOI,文献DOI怎么找? 2562180
邀请新用户注册赠送积分活动 1521649
关于科研通互助平台的介绍 1481599