Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 量子力学 操作系统 物理
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
ChaseY完成签到,获得积分10
2秒前
Gideon完成签到,获得积分10
2秒前
zmy发布了新的文献求助10
2秒前
orixero应助冰柠檬采纳,获得10
3秒前
勤奋的衬衫完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
银河灰烬发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
友好的妙松完成签到,获得积分10
8秒前
10秒前
grant完成签到,获得积分20
11秒前
韭黄发布了新的文献求助10
11秒前
小二郎应助Tloml-dw010530采纳,获得10
13秒前
儒雅路人完成签到,获得积分10
13秒前
13秒前
糊涂的康完成签到,获得积分10
13秒前
彭于晏应助Fighter采纳,获得10
14秒前
14秒前
grant发布了新的文献求助10
14秒前
16秒前
17秒前
蛇蛇王子完成签到 ,获得积分10
18秒前
冰柠檬发布了新的文献求助10
19秒前
20秒前
michael发布了新的文献求助10
21秒前
小蘑菇应助韭黄采纳,获得10
22秒前
何大青完成签到,获得积分10
22秒前
23秒前
王津丹发布了新的文献求助10
24秒前
lily完成签到,获得积分10
24秒前
张顾伟完成签到,获得积分10
24秒前
orixero应助居居采纳,获得10
25秒前
Fighter发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540209
求助须知:如何正确求助?哪些是违规求助? 4626761
关于积分的说明 14600864
捐赠科研通 4567797
什么是DOI,文献DOI怎么找? 2504227
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453541