Short-term power load forecasting system based on rough set, information granule and multi-objective optimization

计算机科学 粒度 粗集 电力系统 数据挖掘 帕累托原理 数学优化 功率(物理) 数学 量子力学 操作系统 物理
作者
Jianzhou Wang,Kang Wang,Zhiwu Li,Haiyan Lu,He Jiang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110692-110692 被引量:13
标识
DOI:10.1016/j.asoc.2023.110692
摘要

Accurately forecasting power load is essential for utilities to effectively manage their resources, reduce operational costs, and provide improved customer service. However, the current load forecasting lacks the ability to deeply explore data, thus failing to accurately predict both short-term trends and volatility ranges. To address this issue, we construct a novel combined forecasting system based on rough sets, information granulation, deep learning, and multi-objective optimization. In this study, we follow the reasonable granulation criterion for granular computing, which aims to improve the reasonableness and specificity of granular interval prediction under the determination of granularity level, and innovatively propose a novel multi-objective optimization algorithm that can simultaneously constrain the reasonable granulation criterion and theoretically demonstrate the obtained Pareto-optimal solution. Four simulation experiments were conducted using the Australian dataset to evaluate the performance of our proposed system in predicting trend changes and fluctuation ranges of power load. Our results demonstrate that the developed system effectively predicts the trend changes and fluctuation range of power load. Specifically, our system showed a deterministic prediction performance improvement of 13.39% and a granularity interval prediction performance improvement of 6.67% compared to the baseline model. Moreover, we conducted a series of discussion tests to validate the superiority of our system, which further confirmed the effectiveness of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zengyl发布了新的文献求助10
4秒前
4秒前
zhouzehua1003发布了新的文献求助10
5秒前
欢檬应助优秀的枕头采纳,获得10
7秒前
8秒前
8秒前
zengyl完成签到,获得积分10
11秒前
icm发布了新的文献求助10
12秒前
13秒前
GAO完成签到,获得积分10
13秒前
CipherSage应助Erika采纳,获得10
14秒前
等待的易文完成签到 ,获得积分10
16秒前
丘山完成签到,获得积分10
16秒前
18秒前
英姑应助思维隋采纳,获得10
18秒前
羊村黑恶势力完成签到,获得积分10
19秒前
在水一方应助花花采纳,获得10
20秒前
Rondab应助Jamie2采纳,获得30
21秒前
慕青应助清沐颖涵采纳,获得10
23秒前
24秒前
沸羊羊发布了新的文献求助10
24秒前
24秒前
李y梅子完成签到,获得积分10
25秒前
Jasper应助icm采纳,获得30
25秒前
王提完成签到,获得积分10
26秒前
文艺向日葵完成签到,获得积分20
28秒前
28秒前
迷路安雁发布了新的文献求助10
28秒前
30秒前
passerby完成签到,获得积分10
30秒前
寒冷的匪发布了新的文献求助10
30秒前
huihui完成签到,获得积分10
33秒前
生姜完成签到 ,获得积分10
33秒前
xia发布了新的文献求助10
34秒前
花花发布了新的文献求助10
34秒前
34秒前
36秒前
霸气鹏飞发布了新的文献求助10
36秒前
沸羊羊完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710