Long-term spatiotemporal variations in surface NO2 for Beijing reconstructed from surface data and satellite retrievals

臭氧监测仪 环境科学 卫星 北京 对流层 二氧化氮 遥感 后发 气象学 大气科学 采样(信号处理) 地理 计算机科学 地质学 滤波器(信号处理) 工程类 航空航天工程 考古 中国 计算机视觉
作者
Zixiang Zhao,Yichen Lu,Yu Zhan,Yuan Cheng,Fumo Yang,Jeffrey R. Brook,Kebin He
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:904: 166693-166693
标识
DOI:10.1016/j.scitotenv.2023.166693
摘要

Remote sensing data from the Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) play important roles in estimating surface nitrogen dioxide (NO2), but few studies have compared their differences for application in surface NO2 reconstruction. This study aims to explore the effectiveness of incorporating the tropospheric NO2 vertical column density (VCD) from OMI and TROPOMI (hereafter referred to as OMI and TROPOMI, respectively, for conciseness) for deriving surface NO2 and to apply the resulting data to revisit the spatiotemporal variations in surface NO2 for Beijing over the 2005-2020 period during which there were significant reductions in nitrogen oxide emissions. In the OMI versus TROPOMI performance comparison, the cross-validation R2 values were 0.73 and 0.72, respectively, at 1 km resolution and 0.69 for both at 100 m resolution. The comparisons between satellite data sources indicate that even though TROPOMI has a finer resolution it does not improve upon OMI for deriving surface NO2 at 1 km resolution, especially for analyzing long-term trends. In light of the comparison results, we used a hybrid approach based on machine learning to derive the spatiotemporal distribution of surface NO2 during 2005-2020 based on OMI. We had novel, independent passive sampling data collected weekly from July to September of 2008 for hindcasting validation and found a spatiotemporal R2 of 0.46 (RMSE = 7.0 ppb). Regarding the long-term trend of surface NO2, the level in 2008 was obviously lower than that in 2007 and 2009, as expected, which was attributed to pollution restrictions during the Olympic Games. The NO2 level started to steadily decline from 2015 and fell below 2008's level after 2017. Based on OMI, a long-term and fine-resolution surface NO2 dataset was developed for Beijing to support future environmental management questions and epidemiological research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易琚完成签到,获得积分10
1秒前
活泼的机器猫完成签到,获得积分10
2秒前
Jasper应助晶镓万岁采纳,获得10
2秒前
2秒前
2秒前
3秒前
明亮梦安完成签到 ,获得积分10
3秒前
自信以冬发布了新的文献求助10
4秒前
4秒前
4秒前
ZXF发布了新的文献求助10
4秒前
希望天下0贩的0应助田...采纳,获得10
5秒前
5秒前
万能图书馆应助YINGJI采纳,获得10
5秒前
优美飞柏完成签到,获得积分10
5秒前
6秒前
吗喽小祁完成签到,获得积分10
7秒前
aitianzhuoyi发布了新的文献求助10
7秒前
enchanted完成签到,获得积分10
7秒前
7秒前
搜集达人应助司空天磊采纳,获得10
8秒前
8秒前
小蘑菇应助友好的鲜花采纳,获得10
9秒前
shangxinyu发布了新的文献求助10
9秒前
斯文败类应助俭朴钢铁侠采纳,获得10
10秒前
11秒前
12秒前
12秒前
linmo发布了新的文献求助10
12秒前
12秒前
热舞特发布了新的文献求助10
12秒前
13秒前
公子浅言完成签到 ,获得积分10
14秒前
abcdefg完成签到,获得积分10
14秒前
14秒前
14秒前
甜蜜凡波发布了新的文献求助10
15秒前
15秒前
onestepcloser完成签到 ,获得积分10
15秒前
君克渡完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271