Long-term spatiotemporal variations in surface NO2 for Beijing reconstructed from surface data and satellite retrievals

臭氧监测仪 环境科学 卫星 北京 对流层 二氧化氮 遥感 后发 气象学 大气科学 采样(信号处理) 地理 计算机科学 地质学 考古 滤波器(信号处理) 中国 工程类 计算机视觉 航空航天工程
作者
Zixiang Zhao,Yichen Lu,Yu Zhan,Yuan Cheng,Fumo Yang,Jeffrey R. Brook,Kebin He
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:904: 166693-166693
标识
DOI:10.1016/j.scitotenv.2023.166693
摘要

Remote sensing data from the Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) play important roles in estimating surface nitrogen dioxide (NO2), but few studies have compared their differences for application in surface NO2 reconstruction. This study aims to explore the effectiveness of incorporating the tropospheric NO2 vertical column density (VCD) from OMI and TROPOMI (hereafter referred to as OMI and TROPOMI, respectively, for conciseness) for deriving surface NO2 and to apply the resulting data to revisit the spatiotemporal variations in surface NO2 for Beijing over the 2005-2020 period during which there were significant reductions in nitrogen oxide emissions. In the OMI versus TROPOMI performance comparison, the cross-validation R2 values were 0.73 and 0.72, respectively, at 1 km resolution and 0.69 for both at 100 m resolution. The comparisons between satellite data sources indicate that even though TROPOMI has a finer resolution it does not improve upon OMI for deriving surface NO2 at 1 km resolution, especially for analyzing long-term trends. In light of the comparison results, we used a hybrid approach based on machine learning to derive the spatiotemporal distribution of surface NO2 during 2005-2020 based on OMI. We had novel, independent passive sampling data collected weekly from July to September of 2008 for hindcasting validation and found a spatiotemporal R2 of 0.46 (RMSE = 7.0 ppb). Regarding the long-term trend of surface NO2, the level in 2008 was obviously lower than that in 2007 and 2009, as expected, which was attributed to pollution restrictions during the Olympic Games. The NO2 level started to steadily decline from 2015 and fell below 2008's level after 2017. Based on OMI, a long-term and fine-resolution surface NO2 dataset was developed for Beijing to support future environmental management questions and epidemiological research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青青完成签到 ,获得积分10
刚刚
Chan0501发布了新的文献求助10
刚刚
昭昭完成签到,获得积分10
1秒前
SCI发布了新的文献求助10
1秒前
卓然完成签到,获得积分10
1秒前
李来仪发布了新的文献求助10
2秒前
3秒前
菲菲呀完成签到,获得积分10
3秒前
Rrr发布了新的文献求助10
3秒前
5秒前
陌路完成签到,获得积分10
5秒前
善学以致用应助leon采纳,获得30
5秒前
6秒前
斯文败类应助嘻嘻采纳,获得10
6秒前
科研通AI5应助小只bb采纳,获得30
6秒前
yyyy发布了新的文献求助10
6秒前
2023AKY完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
彭于晏应助惠惠采纳,获得10
9秒前
风魂剑主完成签到,获得积分10
10秒前
yryzst9899发布了新的文献求助10
10秒前
11秒前
飘逸小笼包完成签到,获得积分10
11秒前
科研小郑完成签到,获得积分10
11秒前
CipherSage应助熊boy采纳,获得10
11秒前
XXGG完成签到 ,获得积分10
12秒前
大个应助舒心赛凤采纳,获得10
12秒前
晨曦发布了新的文献求助10
13秒前
13秒前
ff0110完成签到,获得积分10
14秒前
星辰大海应助苹果萧采纳,获得10
14秒前
徐徐完成签到,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
15秒前
请叫我风吹麦浪应助yoon采纳,获得10
15秒前
认真的青柠完成签到,获得积分10
15秒前
bbanshan完成签到,获得积分10
15秒前
卫生纸发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794