Long-term spatiotemporal variations in surface NO2 for Beijing reconstructed from surface data and satellite retrievals

臭氧监测仪 环境科学 卫星 北京 对流层 二氧化氮 遥感 后发 气象学 大气科学 采样(信号处理) 地理 计算机科学 地质学 考古 滤波器(信号处理) 中国 工程类 计算机视觉 航空航天工程
作者
Zixiang Zhao,Yichen Lu,Yu Zhan,Yuan Cheng,Fumo Yang,Jeffrey R. Brook,Kebin He
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:904: 166693-166693
标识
DOI:10.1016/j.scitotenv.2023.166693
摘要

Remote sensing data from the Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI) play important roles in estimating surface nitrogen dioxide (NO2), but few studies have compared their differences for application in surface NO2 reconstruction. This study aims to explore the effectiveness of incorporating the tropospheric NO2 vertical column density (VCD) from OMI and TROPOMI (hereafter referred to as OMI and TROPOMI, respectively, for conciseness) for deriving surface NO2 and to apply the resulting data to revisit the spatiotemporal variations in surface NO2 for Beijing over the 2005-2020 period during which there were significant reductions in nitrogen oxide emissions. In the OMI versus TROPOMI performance comparison, the cross-validation R2 values were 0.73 and 0.72, respectively, at 1 km resolution and 0.69 for both at 100 m resolution. The comparisons between satellite data sources indicate that even though TROPOMI has a finer resolution it does not improve upon OMI for deriving surface NO2 at 1 km resolution, especially for analyzing long-term trends. In light of the comparison results, we used a hybrid approach based on machine learning to derive the spatiotemporal distribution of surface NO2 during 2005-2020 based on OMI. We had novel, independent passive sampling data collected weekly from July to September of 2008 for hindcasting validation and found a spatiotemporal R2 of 0.46 (RMSE = 7.0 ppb). Regarding the long-term trend of surface NO2, the level in 2008 was obviously lower than that in 2007 and 2009, as expected, which was attributed to pollution restrictions during the Olympic Games. The NO2 level started to steadily decline from 2015 and fell below 2008's level after 2017. Based on OMI, a long-term and fine-resolution surface NO2 dataset was developed for Beijing to support future environmental management questions and epidemiological research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
车宇完成签到 ,获得积分10
1秒前
琪求好运完成签到,获得积分10
1秒前
嘛呱发布了新的文献求助10
2秒前
彭大啦啦发布了新的文献求助10
5秒前
joshar完成签到,获得积分10
7秒前
小n完成签到,获得积分10
8秒前
徐翩跹完成签到,获得积分10
9秒前
壹加壹完成签到,获得积分10
10秒前
Jrssion发布了新的文献求助10
10秒前
11秒前
种草匠完成签到,获得积分10
13秒前
avaig完成签到 ,获得积分10
14秒前
彭大啦啦完成签到,获得积分10
15秒前
贾克斯发布了新的文献求助10
17秒前
丁静完成签到 ,获得积分10
17秒前
Z666666666完成签到 ,获得积分10
18秒前
18秒前
dong完成签到,获得积分10
19秒前
20秒前
suliuyin完成签到 ,获得积分10
22秒前
23秒前
ding应助导师求放过采纳,获得10
23秒前
聪慧的诗兰完成签到,获得积分10
25秒前
灵长目藻科完成签到,获得积分10
25秒前
26秒前
思源应助端端采纳,获得10
27秒前
27秒前
28秒前
alpha完成签到,获得积分10
28秒前
29秒前
火星完成签到 ,获得积分10
31秒前
最棒的小羊完成签到 ,获得积分10
31秒前
alpha发布了新的文献求助10
33秒前
研究菜鸟发布了新的文献求助10
33秒前
34秒前
36秒前
合适一斩完成签到,获得积分10
37秒前
13369932259完成签到,获得积分10
38秒前
santory应助jwjzsznb采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408