急性呼吸窘迫综合征
超氧化物歧化酶
活性氧
肺
肺水肿
氧化应激
支气管肺泡灌洗
免疫学
生物
化学
药理学
生物化学
医学
内科学
作者
S. McCarthy,Maura A. Tilbury,Claire Masterson,Ronan MacLoughlin,H. Esteban,John G. Laffey,J. Gerard Wall,Daniel O’Toole
出处
期刊:Journal of Aerosol Medicine and Pulmonary Drug Delivery
[Mary Ann Liebert]
日期:2023-08-28
卷期号:36 (5): 246-256
标识
DOI:10.1089/jamp.2022.0069
摘要
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure syndrome with diverse etiologies characterized by increased permeability of alveolar-capillary membranes, pulmonary edema, and acute onset hypoxemia. During the ARDS acute phase, neutrophil infiltration into the alveolar space results in uncontrolled release of reactive oxygen species (ROS) and proteases, overwhelming antioxidant defenses and causing alveolar epithelial and lung endothelial injury. Objectives: To investigate the therapeutic potential of a novel recombinant human Cu-Zn-superoxide dismutase (SOD) fusion protein in protecting against ROS injury and for aerosolized SOD delivery to treat Escherichia coli induced ARDS. Methods: Fusion proteins incorporating human Cu-Zn-SOD (hSOD1), with (pep1-hSOD1-his) and without (hSOD1-his) a fused hyaluronic acid-binding peptide, were expressed in E. coli. Purified proteins were evaluated in in vitro assays with human bronchial epithelial cells and through aerosolized delivery to the lung of an E. coli-induced ARDS rat model. Results: SOD proteins exhibited high SOD activity in vitro and protected bronchial epithelial cells from oxidative damage. hSOD1-his and pep1-hSOD1-his retained SOD activity postnebulization and exhibited no adverse effects in the rat. Pep1-hSOD1-his administered through instillation or nebulization to the lung of an E. coli-induced pneumonia rat improved arterial oxygenation and lactate levels compared to vehicle after 48 hours. Static lung compliance was improved when the pep1-hSOD1-his protein was delivered by instillation. White cell infiltration to the lung was significantly reduced by aerosolized delivery of protein, and reduction of cytokine-induced neutrophil chemoattractant-1, interferon-gamma, and interleukin 6 pro-inflammatory cytokine concentrations in bronchoalveolar lavage was observed. Conclusions: Aerosol delivery of a novel recombinant modified SOD protein reduces oxidant injury and attenuates E. coli induced lung injury in rats. The results provide a strong basis for further investigation of the therapeutic potential of hSOD1 in the treatment of ARDS.
科研通智能强力驱动
Strongly Powered by AbleSci AI