Finding Camouflaged Objects Along the Camouflage Mechanisms

伪装 计算机科学 任务(项目管理) 人工智能 透视图(图形) 过程(计算) 对象(语法) 计算机视觉 人机交互 工程类 操作系统 系统工程
作者
Yang Yang,Qiang Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2346-2360 被引量:5
标识
DOI:10.1109/tcsvt.2023.3308964
摘要

Common mechanisms for achieving object camouflage include reducing differences and increasing distractions. Such camouflage mechanisms hinder the object detectors to accurately distinguish the camouflaged objects from their surroundings. Considering that, we reexamine the camouflaged object detection (COD) task from the perspective of camouflage mechanisms and make the first attempt to discover the target objects in a de-camouflaging manner. We argue that this process can not only lead to a better understanding of camouflage, but also provide a new perspective for detecting camouflaged objects. For that, we first analyze some existing camouflage mechanisms together with their induced problems. Afterwards, considering the inner relationships between SOD and COD, we resort to the SOD task to synergistically achieve de-camouflaging for COD. Specifically, we incorporate the SOD task into the COD model and present a multi-task learning framework for COD, which models the intrinsic relationships between the two tasks from different perspectives, i.e., task-conflicting attribute and task-consistent attribute, to destroy the camouflage conditions for highlighting those inconspicuous yet valuable cues of camouflaged objects. In more detail, modeling the task-conflicting attribute is to well identify camouflaged objects by alleviating such interfering information from salient ones, and is achieved by a Gate Classification (GC) strategy and a Region Distraction Module (RDM). While, modeling the task-consistent attribute, which is achieved by an adversarial learning (AL) scheme and a Boundary Injection Module (BIM), is intended to enhance the boundary differences between the camouflaged objects and their backgrounds for fully segmenting the camouflaged objects. Extensive results demonstrate the superiorities of our proposed model over existing ones in camouflaged object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小芒果完成签到,获得积分0
刚刚
WhiteT发布了新的文献求助40
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
x菜鸡博士应助科研通管家采纳,获得10
1秒前
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
开心浩阑应助科研通管家采纳,获得20
1秒前
英姑应助科研通管家采纳,获得10
1秒前
小豆豆应助科研通管家采纳,获得30
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
彭于彦祖应助FireNow采纳,获得30
2秒前
邓佳鑫Alan应助小陆采纳,获得10
2秒前
邹哥完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
TheQ完成签到,获得积分10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
midokaori发布了新的文献求助10
4秒前
任性采梦完成签到,获得积分20
5秒前
NO0809完成签到,获得积分10
5秒前
5秒前
优秀的颤发布了新的文献求助10
5秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306