亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Finding Camouflaged Objects Along the Camouflage Mechanisms

伪装 计算机科学 任务(项目管理) 人工智能 透视图(图形) 过程(计算) 对象(语法) 计算机视觉 人机交互 工程类 操作系统 系统工程
作者
Yang Yang,Qiang Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2346-2360 被引量:5
标识
DOI:10.1109/tcsvt.2023.3308964
摘要

Common mechanisms for achieving object camouflage include reducing differences and increasing distractions. Such camouflage mechanisms hinder the object detectors to accurately distinguish the camouflaged objects from their surroundings. Considering that, we reexamine the camouflaged object detection (COD) task from the perspective of camouflage mechanisms and make the first attempt to discover the target objects in a de-camouflaging manner. We argue that this process can not only lead to a better understanding of camouflage, but also provide a new perspective for detecting camouflaged objects. For that, we first analyze some existing camouflage mechanisms together with their induced problems. Afterwards, considering the inner relationships between SOD and COD, we resort to the SOD task to synergistically achieve de-camouflaging for COD. Specifically, we incorporate the SOD task into the COD model and present a multi-task learning framework for COD, which models the intrinsic relationships between the two tasks from different perspectives, i.e., task-conflicting attribute and task-consistent attribute, to destroy the camouflage conditions for highlighting those inconspicuous yet valuable cues of camouflaged objects. In more detail, modeling the task-conflicting attribute is to well identify camouflaged objects by alleviating such interfering information from salient ones, and is achieved by a Gate Classification (GC) strategy and a Region Distraction Module (RDM). While, modeling the task-consistent attribute, which is achieved by an adversarial learning (AL) scheme and a Boundary Injection Module (BIM), is intended to enhance the boundary differences between the camouflaged objects and their backgrounds for fully segmenting the camouflaged objects. Extensive results demonstrate the superiorities of our proposed model over existing ones in camouflaged object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
42秒前
科研通AI5应助Lili采纳,获得10
1分钟前
华仔应助烂漫大地采纳,获得10
1分钟前
严冰蝶完成签到 ,获得积分10
1分钟前
1分钟前
烂漫大地发布了新的文献求助10
1分钟前
1分钟前
liyuanhe211发布了新的文献求助200
2分钟前
重景完成签到 ,获得积分10
2分钟前
无限怜阳完成签到,获得积分10
2分钟前
2分钟前
鹿茸与共发布了新的文献求助30
3分钟前
3分钟前
无心的板凳完成签到,获得积分10
3分钟前
古人完成签到,获得积分10
3分钟前
123完成签到 ,获得积分10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
4分钟前
LY发布了新的文献求助10
4分钟前
LY完成签到,获得积分20
4分钟前
Xin完成签到,获得积分20
4分钟前
4分钟前
李健的粉丝团团长应助Xin采纳,获得10
4分钟前
古人发布了新的文献求助10
4分钟前
6分钟前
Jason完成签到 ,获得积分10
6分钟前
科研通AI5应助健忘的幻梅采纳,获得10
6分钟前
小白菜完成签到,获得积分10
7分钟前
7分钟前
QiongYin_123完成签到 ,获得积分10
7分钟前
jackone完成签到,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
我是老大应助科研通管家采纳,获得10
7分钟前
完美世界应助cc采纳,获得10
7分钟前
8分钟前
cc发布了新的文献求助10
8分钟前
Arthur完成签到 ,获得积分10
8分钟前
8分钟前
慕青应助xc采纳,获得10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746109
求助须知:如何正确求助?哪些是违规求助? 3288998
关于积分的说明 10061615
捐赠科研通 3005273
什么是DOI,文献DOI怎么找? 1650147
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242