Finding Camouflaged Objects Along the Camouflage Mechanisms

伪装 计算机科学 任务(项目管理) 人工智能 透视图(图形) 过程(计算) 对象(语法) 计算机视觉 人机交互 工程类 系统工程 操作系统
作者
Yang Yang,Qiang Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2346-2360 被引量:2
标识
DOI:10.1109/tcsvt.2023.3308964
摘要

Common mechanisms for achieving object camouflage include reducing differences and increasing distractions. Such camouflage mechanisms hinder the object detectors to accurately distinguish the camouflaged objects from their surroundings. Considering that, we reexamine the camouflaged object detection (COD) task from the perspective of camouflage mechanisms and make the first attempt to discover the target objects in a de-camouflaging manner. We argue that this process can not only lead to a better understanding of camouflage, but also provide a new perspective for detecting camouflaged objects. For that, we first analyze some existing camouflage mechanisms together with their induced problems. Afterwards, considering the inner relationships between SOD and COD, we resort to the SOD task to synergistically achieve de-camouflaging for COD. Specifically, we incorporate the SOD task into the COD model and present a multi-task learning framework for COD, which models the intrinsic relationships between the two tasks from different perspectives, i.e., task-conflicting attribute and task-consistent attribute, to destroy the camouflage conditions for highlighting those inconspicuous yet valuable cues of camouflaged objects. In more detail, modeling the task-conflicting attribute is to well identify camouflaged objects by alleviating such interfering information from salient ones, and is achieved by a Gate Classification (GC) strategy and a Region Distraction Module (RDM). While, modeling the task-consistent attribute, which is achieved by an adversarial learning (AL) scheme and a Boundary Injection Module (BIM), is intended to enhance the boundary differences between the camouflaged objects and their backgrounds for fully segmenting the camouflaged objects. Extensive results demonstrate the superiorities of our proposed model over existing ones in camouflaged object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拾捌发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
3秒前
桐桐应助喵喵发文章啦采纳,获得10
6秒前
傲娇蜻蜓发布了新的文献求助10
7秒前
坦率雁卉发布了新的文献求助10
9秒前
科目三应助LiuJinhui采纳,获得10
11秒前
zzz发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
虎虎发布了新的文献求助10
20秒前
8R60d8应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得30
22秒前
23秒前
充电宝应助I1waml采纳,获得10
23秒前
LiuJinhui发布了新的文献求助10
23秒前
28秒前
科研通AI2S应助虎虎采纳,获得10
30秒前
AnjeXi发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
我是老大应助文献下载中采纳,获得10
35秒前
Xixi完成签到 ,获得积分10
36秒前
37秒前
知性的十三完成签到,获得积分10
37秒前
I1waml发布了新的文献求助10
39秒前
40秒前
MJ完成签到 ,获得积分10
42秒前
45秒前
搜集达人应助mumu采纳,获得10
48秒前
liliziwei完成签到,获得积分20
50秒前
1459发布了新的文献求助10
52秒前
无花果应助胖胖采纳,获得10
53秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129