Finding Camouflaged Objects Along the Camouflage Mechanisms

伪装 计算机科学 任务(项目管理) 人工智能 透视图(图形) 过程(计算) 对象(语法) 计算机视觉 人机交互 工程类 系统工程 操作系统
作者
Yang Yang,Qiang Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2346-2360 被引量:26
标识
DOI:10.1109/tcsvt.2023.3308964
摘要

Common mechanisms for achieving object camouflage include reducing differences and increasing distractions. Such camouflage mechanisms hinder the object detectors to accurately distinguish the camouflaged objects from their surroundings. Considering that, we reexamine the camouflaged object detection (COD) task from the perspective of camouflage mechanisms and make the first attempt to discover the target objects in a de-camouflaging manner. We argue that this process can not only lead to a better understanding of camouflage, but also provide a new perspective for detecting camouflaged objects. For that, we first analyze some existing camouflage mechanisms together with their induced problems. Afterwards, considering the inner relationships between SOD and COD, we resort to the SOD task to synergistically achieve de-camouflaging for COD. Specifically, we incorporate the SOD task into the COD model and present a multi-task learning framework for COD, which models the intrinsic relationships between the two tasks from different perspectives, i.e., task-conflicting attribute and task-consistent attribute, to destroy the camouflage conditions for highlighting those inconspicuous yet valuable cues of camouflaged objects. In more detail, modeling the task-conflicting attribute is to well identify camouflaged objects by alleviating such interfering information from salient ones, and is achieved by a Gate Classification (GC) strategy and a Region Distraction Module (RDM). While, modeling the task-consistent attribute, which is achieved by an adversarial learning (AL) scheme and a Boundary Injection Module (BIM), is intended to enhance the boundary differences between the camouflaged objects and their backgrounds for fully segmenting the camouflaged objects. Extensive results demonstrate the superiorities of our proposed model over existing ones in camouflaged object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucaslucas完成签到,获得积分10
刚刚
刚刚
123发布了新的文献求助10
刚刚
asiya发布了新的文献求助10
1秒前
1秒前
hooke发布了新的文献求助10
1秒前
1秒前
烟花应助Foalphaz采纳,获得10
1秒前
2秒前
12ss发布了新的文献求助30
2秒前
pluto应助fiu~采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
拉尼娜发布了新的文献求助10
3秒前
11111完成签到,获得积分10
3秒前
慕青应助黄燕采纳,获得10
3秒前
3秒前
安静店员完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
花已烬发布了新的文献求助20
4秒前
4秒前
4秒前
温暖的萤发布了新的文献求助10
5秒前
超甜大西瓜完成签到,获得积分10
5秒前
无花果应助郑泽航采纳,获得10
6秒前
6秒前
杨沛发布了新的文献求助10
6秒前
6秒前
zhangxq发布了新的文献求助10
6秒前
研友_VZG7GZ应助冰苏打采纳,获得10
7秒前
ZL发布了新的文献求助10
7秒前
liurencun发布了新的文献求助10
7秒前
7秒前
7秒前
electromx发布了新的文献求助20
8秒前
高贵焦发布了新的文献求助10
8秒前
充电宝应助SYS采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807