Multiobjective Solid Electrolyte Design of Tetragonal and Cubic Inverse-Perovskites for All-Solid-State Lithium-Ion Batteries by High-Throughput Density Functional Theory Calculations and AI-Driven Methods

密度泛函理论 四方晶系 材料科学 快离子导体 带隙 化学 物理化学 电解质 计算化学 晶体结构 结晶学 电极 光电子学
作者
Randy Jalem,Yoshitaka Tateyama,Kazunori Takada,Seong‐Hoon Jang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (35): 17307-17323 被引量:4
标识
DOI:10.1021/acs.jpcc.3c02801
摘要

Solid electrolytes (SEs) are crucial materials to realize highly safe and practical all-solid-state Li+-ion batteries. Here, we performed a large-scale computational SE screening on a chemical space of >10 000 Li-rich inverse-perovskite (ip) compounds with tetragonal and cubic structures by high-throughput density functional theory (DFT) and AI-driven methods. A total of 1413 novel candidate compounds were predicted to be synthesizable based on thermodynamic decomposition energy (Ed) and machine-learned experimental synthesis likelihood (Ls). These compounds were further screened using a Pareto-front approximation set of a multiobjective Bayesian optimization tasks for k = 3 DFT-calculated SE properties (fk, with k = 1, 2, and 3): (i) electrochemical window from electronic band gap energy (f1: Eg), (ii) chemical stability by reaction with moisture (f2: Eh), and (iii) 400 K bulk Li+-ion conductivity (f3: Λ). As a result, the compound list was reduced down to 24 candidate ip SEs, and examples include Cm Li8O2Cl3Br (Ed = 0, Ls > 0.5, Eg = 4.74 eV, Eh = −33.22 kJ/mol, and Λ = 9.0 × 10–4 S/cm), Amm2 Li8OSCl4 (Ed = 0.070 eV/atom, Ls > 0.5, Eg = 4.14 eV, Eh = −40.70 kJ/mol, and Λ = 9.2 × 10–2 S/cm), and Cmcm Li12O3SeClBr3 (Ed = 0.097 eV/atom, Ls > 0.5, Eg = 3.36 eV, Eh = −86.88 kJ/mol, and Λ = 7.8 × 10–1 S/cm). Possible solid-state synthesis routes for the screened SE candidates were also explored using thermodynamic phase competition analysis and classical nucleation theory reaction barrier. Aside from providing a well-informed list of potentially novel ip-type SEs, our work also reports on an effective calculation methodology for tiered large-scale material screening which, at the same time, incorporates "small data" learning on target property datasets that are computationally expensive to obtain. The generated datasets are expected as well to be of great utility for future data-driven material design efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
怕黑的归尘关注了科研通微信公众号
3秒前
笑点低的云朵完成签到,获得积分10
3秒前
5秒前
6秒前
7秒前
四海完成签到,获得积分10
8秒前
酷波er应助loooooong采纳,获得10
9秒前
海德堡发布了新的文献求助10
9秒前
cc完成签到 ,获得积分10
10秒前
司空起眸发布了新的文献求助10
11秒前
QQ完成签到 ,获得积分10
12秒前
干亿先完成签到 ,获得积分10
13秒前
13秒前
fuyu98完成签到,获得积分10
14秒前
哦哦发布了新的文献求助10
15秒前
动听雁山完成签到 ,获得积分10
16秒前
龙共发布了新的文献求助10
17秒前
Jenny发布了新的文献求助10
18秒前
18秒前
垃圾桶完成签到 ,获得积分10
21秒前
王珏珏完成签到,获得积分20
23秒前
张ZWY完成签到 ,获得积分10
23秒前
喻紫寒完成签到 ,获得积分10
23秒前
GT发布了新的文献求助10
25秒前
Hz发布了新的文献求助10
25秒前
不懈奋进应助大牛采纳,获得30
28秒前
28秒前
动点子智慧完成签到,获得积分10
29秒前
wy.he举报细腻的山水求助涉嫌违规
29秒前
Ella完成签到,获得积分10
29秒前
danxue完成签到,获得积分10
30秒前
rh1006发布了新的文献求助10
30秒前
春天先生发布了新的文献求助10
32秒前
32秒前
渊思发布了新的文献求助10
33秒前
Xiaoxiao应助勤劳糜采纳,获得10
35秒前
小于完成签到,获得积分10
38秒前
huhaoran关注了科研通微信公众号
39秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343