Multiobjective Solid Electrolyte Design of Tetragonal and Cubic Inverse-Perovskites for All-Solid-State Lithium-Ion Batteries by High-Throughput Density Functional Theory Calculations and AI-Driven Methods

密度泛函理论 四方晶系 材料科学 快离子导体 带隙 化学 物理化学 电解质 计算化学 晶体结构 结晶学 电极 光电子学
作者
Randy Jalem,Yoshitaka Tateyama,Kazunori Takada,Seong‐Hoon Jang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (35): 17307-17323 被引量:7
标识
DOI:10.1021/acs.jpcc.3c02801
摘要

Solid electrolytes (SEs) are crucial materials to realize highly safe and practical all-solid-state Li+-ion batteries. Here, we performed a large-scale computational SE screening on a chemical space of >10 000 Li-rich inverse-perovskite (ip) compounds with tetragonal and cubic structures by high-throughput density functional theory (DFT) and AI-driven methods. A total of 1413 novel candidate compounds were predicted to be synthesizable based on thermodynamic decomposition energy (Ed) and machine-learned experimental synthesis likelihood (Ls). These compounds were further screened using a Pareto-front approximation set of a multiobjective Bayesian optimization tasks for k = 3 DFT-calculated SE properties (fk, with k = 1, 2, and 3): (i) electrochemical window from electronic band gap energy (f1: Eg), (ii) chemical stability by reaction with moisture (f2: Eh), and (iii) 400 K bulk Li+-ion conductivity (f3: Λ). As a result, the compound list was reduced down to 24 candidate ip SEs, and examples include Cm Li8O2Cl3Br (Ed = 0, Ls > 0.5, Eg = 4.74 eV, Eh = −33.22 kJ/mol, and Λ = 9.0 × 10–4 S/cm), Amm2 Li8OSCl4 (Ed = 0.070 eV/atom, Ls > 0.5, Eg = 4.14 eV, Eh = −40.70 kJ/mol, and Λ = 9.2 × 10–2 S/cm), and Cmcm Li12O3SeClBr3 (Ed = 0.097 eV/atom, Ls > 0.5, Eg = 3.36 eV, Eh = −86.88 kJ/mol, and Λ = 7.8 × 10–1 S/cm). Possible solid-state synthesis routes for the screened SE candidates were also explored using thermodynamic phase competition analysis and classical nucleation theory reaction barrier. Aside from providing a well-informed list of potentially novel ip-type SEs, our work also reports on an effective calculation methodology for tiered large-scale material screening which, at the same time, incorporates "small data" learning on target property datasets that are computationally expensive to obtain. The generated datasets are expected as well to be of great utility for future data-driven material design efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助古木采纳,获得10
刚刚
1秒前
懦弱的沛芹完成签到,获得积分10
2秒前
3秒前
天天快乐应助霸气的南晴采纳,获得10
3秒前
爱学习的叭叭完成签到,获得积分10
3秒前
桐桐应助han采纳,获得10
4秒前
future发布了新的文献求助10
4秒前
miao完成签到,获得积分10
4秒前
ieeat发布了新的文献求助10
6秒前
6秒前
6秒前
小二郎应助PP采纳,获得10
7秒前
洛绮云完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助10
8秒前
orixero应助许xu采纳,获得10
8秒前
ZZJ111发布了新的文献求助20
8秒前
乐辰发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
糖不太甜完成签到,获得积分10
10秒前
EVEN发布了新的文献求助10
10秒前
11秒前
科研欣路完成签到,获得积分10
11秒前
搜集达人应助九陌采纳,获得10
12秒前
杨立胜发布了新的文献求助10
12秒前
12秒前
猫小猪发布了新的文献求助10
13秒前
huangr123完成签到 ,获得积分10
14秒前
han发布了新的文献求助10
15秒前
15秒前
16秒前
wanci应助猫猫无敌采纳,获得10
16秒前
追寻奇迹完成签到 ,获得积分10
17秒前
房天川发布了新的文献求助20
17秒前
然然发布了新的文献求助20
18秒前
是玥玥啊完成签到,获得积分10
18秒前
19秒前
Tonson完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400