Multiobjective Solid Electrolyte Design of Tetragonal and Cubic Inverse-Perovskites for All-Solid-State Lithium-Ion Batteries by High-Throughput Density Functional Theory Calculations and AI-Driven Methods

密度泛函理论 四方晶系 材料科学 快离子导体 带隙 化学 物理化学 电解质 计算化学 晶体结构 结晶学 电极 光电子学
作者
Randy Jalem,Yoshitaka Tateyama,Kazunori Takada,Seong‐Hoon Jang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (35): 17307-17323 被引量:7
标识
DOI:10.1021/acs.jpcc.3c02801
摘要

Solid electrolytes (SEs) are crucial materials to realize highly safe and practical all-solid-state Li+-ion batteries. Here, we performed a large-scale computational SE screening on a chemical space of >10 000 Li-rich inverse-perovskite (ip) compounds with tetragonal and cubic structures by high-throughput density functional theory (DFT) and AI-driven methods. A total of 1413 novel candidate compounds were predicted to be synthesizable based on thermodynamic decomposition energy (Ed) and machine-learned experimental synthesis likelihood (Ls). These compounds were further screened using a Pareto-front approximation set of a multiobjective Bayesian optimization tasks for k = 3 DFT-calculated SE properties (fk, with k = 1, 2, and 3): (i) electrochemical window from electronic band gap energy (f1: Eg), (ii) chemical stability by reaction with moisture (f2: Eh), and (iii) 400 K bulk Li+-ion conductivity (f3: Λ). As a result, the compound list was reduced down to 24 candidate ip SEs, and examples include Cm Li8O2Cl3Br (Ed = 0, Ls > 0.5, Eg = 4.74 eV, Eh = −33.22 kJ/mol, and Λ = 9.0 × 10–4 S/cm), Amm2 Li8OSCl4 (Ed = 0.070 eV/atom, Ls > 0.5, Eg = 4.14 eV, Eh = −40.70 kJ/mol, and Λ = 9.2 × 10–2 S/cm), and Cmcm Li12O3SeClBr3 (Ed = 0.097 eV/atom, Ls > 0.5, Eg = 3.36 eV, Eh = −86.88 kJ/mol, and Λ = 7.8 × 10–1 S/cm). Possible solid-state synthesis routes for the screened SE candidates were also explored using thermodynamic phase competition analysis and classical nucleation theory reaction barrier. Aside from providing a well-informed list of potentially novel ip-type SEs, our work also reports on an effective calculation methodology for tiered large-scale material screening which, at the same time, incorporates "small data" learning on target property datasets that are computationally expensive to obtain. The generated datasets are expected as well to be of great utility for future data-driven material design efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿ha完成签到,获得积分10
1秒前
兴奋芷完成签到,获得积分10
1秒前
1秒前
1秒前
早日毕业完成签到 ,获得积分10
1秒前
LuciusHe完成签到,获得积分10
1秒前
朱晗发布了新的文献求助10
1秒前
翻山越岭觅小溪完成签到,获得积分10
2秒前
小茉莉发布了新的文献求助10
2秒前
ks_Mo发布了新的文献求助10
3秒前
3秒前
研友_LpvQlZ完成签到,获得积分10
3秒前
SmallBamboo完成签到,获得积分10
3秒前
4秒前
4秒前
玫瑰遇上奶油完成签到 ,获得积分10
4秒前
上官若男应助Rylee采纳,获得10
4秒前
沉静傥完成签到,获得积分10
5秒前
白马爱毛驴完成签到,获得积分10
5秒前
运气爆棚完成签到,获得积分10
5秒前
FashionBoy应助吃的饱饱呀采纳,获得10
6秒前
6秒前
大红完成签到,获得积分10
6秒前
Ziy完成签到,获得积分10
6秒前
燕子完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
学术底层完成签到,获得积分10
7秒前
嗯嗯完成签到 ,获得积分10
7秒前
Akim应助昏睡的道消采纳,获得10
8秒前
8秒前
街道办事部完成签到,获得积分10
8秒前
SciGPT应助耶耶采纳,获得10
8秒前
xxx发布了新的文献求助10
8秒前
SuperFAN发布了新的文献求助10
9秒前
9秒前
虚度30年关注了科研通微信公众号
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654