Multiobjective Solid Electrolyte Design of Tetragonal and Cubic Inverse-Perovskites for All-Solid-State Lithium-Ion Batteries by High-Throughput Density Functional Theory Calculations and AI-Driven Methods

密度泛函理论 四方晶系 材料科学 快离子导体 带隙 化学 物理化学 电解质 计算化学 晶体结构 结晶学 电极 光电子学
作者
Randy Jalem,Yoshitaka Tateyama,Kazunori Takada,Seong‐Hoon Jang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (35): 17307-17323 被引量:7
标识
DOI:10.1021/acs.jpcc.3c02801
摘要

Solid electrolytes (SEs) are crucial materials to realize highly safe and practical all-solid-state Li+-ion batteries. Here, we performed a large-scale computational SE screening on a chemical space of >10 000 Li-rich inverse-perovskite (ip) compounds with tetragonal and cubic structures by high-throughput density functional theory (DFT) and AI-driven methods. A total of 1413 novel candidate compounds were predicted to be synthesizable based on thermodynamic decomposition energy (Ed) and machine-learned experimental synthesis likelihood (Ls). These compounds were further screened using a Pareto-front approximation set of a multiobjective Bayesian optimization tasks for k = 3 DFT-calculated SE properties (fk, with k = 1, 2, and 3): (i) electrochemical window from electronic band gap energy (f1: Eg), (ii) chemical stability by reaction with moisture (f2: Eh), and (iii) 400 K bulk Li+-ion conductivity (f3: Λ). As a result, the compound list was reduced down to 24 candidate ip SEs, and examples include Cm Li8O2Cl3Br (Ed = 0, Ls > 0.5, Eg = 4.74 eV, Eh = −33.22 kJ/mol, and Λ = 9.0 × 10–4 S/cm), Amm2 Li8OSCl4 (Ed = 0.070 eV/atom, Ls > 0.5, Eg = 4.14 eV, Eh = −40.70 kJ/mol, and Λ = 9.2 × 10–2 S/cm), and Cmcm Li12O3SeClBr3 (Ed = 0.097 eV/atom, Ls > 0.5, Eg = 3.36 eV, Eh = −86.88 kJ/mol, and Λ = 7.8 × 10–1 S/cm). Possible solid-state synthesis routes for the screened SE candidates were also explored using thermodynamic phase competition analysis and classical nucleation theory reaction barrier. Aside from providing a well-informed list of potentially novel ip-type SEs, our work also reports on an effective calculation methodology for tiered large-scale material screening which, at the same time, incorporates "small data" learning on target property datasets that are computationally expensive to obtain. The generated datasets are expected as well to be of great utility for future data-driven material design efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的弱应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
泽松应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
泽松应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
挡住所有坏运气888完成签到,获得积分10
2秒前
2秒前
Lucas应助睡眠不足中采纳,获得10
3秒前
kusedayang发布了新的文献求助10
3秒前
行雨完成签到,获得积分20
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742394
求助须知:如何正确求助?哪些是违规求助? 5408115
关于积分的说明 15344853
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625257
邀请新用户注册赠送积分活动 1574095
关于科研通互助平台的介绍 1531070