作者
Krishnendu Adhikary,Pradipta Banerjee,Saurav Barman,Bidyut Bandyopadhyay,Debasis Bagchi
摘要
AbstractLemongrass contains a variety of substances that are known to have antioxidant and disease-preventing properties, including essential oils, compounds, minerals, and vitamins. Lemongrass (Cymbopogon Spp.) essential oil (LGEO) has been demonstrated to ameliorate diabetes and accelerate wound healing. A member of the Poaceae family, Lemongrass, a fragrant plant, is cultivated for the extraction of essential oils including myrcene and a mixture of geranial and neral isomers of citral monoterpenes. Active constituents in lemongrass essential oil are myrcene, followed by limonene and citral along with geraniol, citronellol, geranyl acetate, neral, and nerol, which are beneficial to human health. A large part of lemongrass' expansion is driven by the plant's huge industrial potential in the food, cosmetics, and medicinal sectors. A great deal of experimental and modeling study was conducted on the extraction of essential oils. Using Google Scholar and PubMed databases, a systematic review of the literature covering the period from 1996 to 2022 was conducted, in accordance with the PRISMA declaration. There were articles on chemistry, biosynthesis, extraction techniques and worldwide demand of lemongrass oil. We compared the effectiveness of several methods of extracting lemongrass essential oil, including solvent extraction, supercritical CO2 extraction, steam distillation, hydrodistillation (HD), and microwave aided hydrodistillation (MAHD). Moreover, essential oils found in lemongrass and its bioactivities have a significant impact on human health. This manuscript demonstrates the different extraction techniques of lemongrass essential oil and its physiological benefits on diabetic wound healing, tissue repair and regeneration, as well as its immense contribution in ameliorating arthritis and joint pain.Key teaching pointsThe international market demand prediction and the pharmacological benefits of the Lemongrass essential oil have been thoroughly reported here.This article points out that different extraction techniques yield different percentages of citral and other secondary metabolites from lemon grass, for example, microwave assisted hydrodistillation and supercritical carbon dioxide extraction process yields more citral.This article highlights the concept and application of lemongrass oil in aromatherapy, joint-pain, and arthritis.Moreover, this manuscript includes a discussion about the effect of lemongrass oil on diabetic wound healing and tissue regeneration – that paves the way for further research.Keywords: Lemongrass oilMAHDsupercritical carbon dioxide extractionsolvent extractiondiabetic wound healingtissue regenerationarthritis Disclosure statementNo potential conflict of interest was reported by the author(s).