Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI2S应助vince采纳,获得10
2秒前
666plus发布了新的文献求助10
2秒前
HHHH发布了新的文献求助10
3秒前
3秒前
3秒前
Lucas应助111采纳,获得10
3秒前
顾矜应助夹心贝采纳,获得10
4秒前
覃qqqq完成签到,获得积分10
4秒前
太叔文博完成签到,获得积分10
4秒前
4秒前
5秒前
CodeCraft应助coolkid采纳,获得10
6秒前
6秒前
辛雨凡发布了新的文献求助10
7秒前
anthony发布了新的文献求助10
7秒前
彭于晏应助romio采纳,获得10
8秒前
无花果应助迷你的囧采纳,获得10
8秒前
今后应助Function采纳,获得10
8秒前
LX完成签到,获得积分20
9秒前
科研通AI6应助11220采纳,获得10
9秒前
毛一杉发布了新的文献求助30
10秒前
10秒前
csz发布了新的文献求助10
11秒前
桐桐应助123采纳,获得10
11秒前
12秒前
桐桐应助辛雨凡采纳,获得30
12秒前
12秒前
偏偏海完成签到,获得积分10
12秒前
hui发布了新的文献求助10
13秒前
科研通AI6应助南岸采纳,获得10
14秒前
14秒前
yang驳回了wu应助
16秒前
贾靖涵发布了新的文献求助30
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
阿雷发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675479
求助须知:如何正确求助?哪些是违规求助? 4947181
关于积分的说明 15153700
捐赠科研通 4834844
什么是DOI,文献DOI怎么找? 2589670
邀请新用户注册赠送积分活动 1543429
关于科研通互助平台的介绍 1501211