清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 医学 心理学 古生物学 教育学 替代医学 数学 病理 数据库 纯数学 生物
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪儿完成签到 ,获得积分10
2秒前
忒寒碜完成签到,获得积分10
16秒前
天才小能喵完成签到 ,获得积分0
23秒前
油菜花完成签到,获得积分10
33秒前
Xzx1995完成签到 ,获得积分10
39秒前
碗碗豆喵完成签到 ,获得积分10
53秒前
氟锑酸完成签到 ,获得积分10
57秒前
paradox完成签到 ,获得积分10
59秒前
Harlotte完成签到 ,获得积分0
1分钟前
stiger完成签到,获得积分10
1分钟前
AliEmbark发布了新的文献求助10
1分钟前
万金油完成签到 ,获得积分10
1分钟前
Aha完成签到 ,获得积分10
1分钟前
山是山三十三完成签到 ,获得积分10
1分钟前
然来溪完成签到 ,获得积分10
1分钟前
safari完成签到 ,获得积分10
1分钟前
杭紫雪完成签到,获得积分10
1分钟前
bajiu完成签到 ,获得积分10
2分钟前
Thi发布了新的文献求助10
2分钟前
qiqiqiqiqi完成签到 ,获得积分10
2分钟前
llll完成签到 ,获得积分0
2分钟前
三杯吐然诺完成签到 ,获得积分10
2分钟前
科研通AI2S应助小鱼女侠采纳,获得10
2分钟前
我独舞完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
可耐的万言完成签到 ,获得积分10
2分钟前
sidashu发布了新的文献求助10
2分钟前
小鱼女侠发布了新的文献求助10
2分钟前
善学以致用应助摆渡人采纳,获得10
2分钟前
Edward发布了新的文献求助10
2分钟前
Hello应助胡泳旭采纳,获得10
2分钟前
妮妮完成签到 ,获得积分10
2分钟前
fuws完成签到 ,获得积分10
2分钟前
研友_LmVygn完成签到 ,获得积分10
2分钟前
2分钟前
Aiden完成签到 ,获得积分10
2分钟前
安静的ky完成签到,获得积分10
2分钟前
无花果应助sidashu采纳,获得10
2分钟前
结实凌瑶完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551