亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 医学 心理学 古生物学 教育学 替代医学 数学 病理 数据库 纯数学 生物
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
23秒前
Bonnienuit完成签到 ,获得积分10
38秒前
52秒前
1分钟前
白给完成签到,获得积分10
1分钟前
明芬发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
2分钟前
CapQing完成签到,获得积分10
2分钟前
3分钟前
明芬发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
小不点发布了新的文献求助30
4分钟前
4分钟前
小不点完成签到,获得积分20
4分钟前
木木完成签到 ,获得积分10
4分钟前
5分钟前
DduYy完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
冉亦完成签到,获得积分10
5分钟前
6分钟前
犬来八荒发布了新的文献求助20
6分钟前
HYQ完成签到 ,获得积分10
6分钟前
TYM发布了新的文献求助10
6分钟前
科研通AI6应助TYM采纳,获得30
6分钟前
gengen应助犬来八荒采纳,获得10
6分钟前
7分钟前
7分钟前
犬来八荒完成签到,获得积分10
7分钟前
yyy发布了新的文献求助10
7分钟前
7分钟前
小二郎应助yyy采纳,获得10
7分钟前
Only完成签到 ,获得积分10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671430
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945