Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的从菡完成签到,获得积分10
1秒前
1秒前
qiaoying发布了新的文献求助10
2秒前
2秒前
苹果衫发布了新的文献求助10
2秒前
爱笑麦丽素完成签到 ,获得积分10
2秒前
2秒前
2秒前
h哈完成签到,获得积分10
3秒前
3秒前
PU聚氨酯发布了新的文献求助30
3秒前
5秒前
王123完成签到 ,获得积分10
5秒前
刘荣圣发布了新的文献求助10
5秒前
xx发布了新的文献求助10
5秒前
Akim应助66采纳,获得10
5秒前
英姑应助妩媚的芹采纳,获得10
5秒前
晏啊完成签到,获得积分20
6秒前
李爱国应助白云四季采纳,获得10
6秒前
可爱的函函应助晶莹黎采纳,获得10
7秒前
sway发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
坦率的乐蕊完成签到 ,获得积分10
9秒前
h哈发布了新的文献求助10
10秒前
10秒前
迪迦7777发布了新的文献求助10
13秒前
13秒前
14秒前
559完成签到,获得积分10
14秒前
JamesPei应助胖飞飞采纳,获得10
15秒前
大方雁露完成签到,获得积分20
15秒前
斯文焱发布了新的文献求助10
15秒前
16秒前
jiunuan发布了新的文献求助30
18秒前
19秒前
大方雁露发布了新的文献求助20
20秒前
21秒前
22秒前
强仔完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745492
求助须知:如何正确求助?哪些是违规求助? 5426199
关于积分的说明 15353092
捐赠科研通 4885451
什么是DOI,文献DOI怎么找? 2626705
邀请新用户注册赠送积分活动 1575317
关于科研通互助平台的介绍 1532007