Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 医学 心理学 古生物学 教育学 替代医学 数学 病理 数据库 纯数学 生物
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
孙智远发布了新的文献求助10
1秒前
1秒前
JamesPei应助桑尼号采纳,获得10
2秒前
2秒前
2秒前
2秒前
慕青应助LI采纳,获得10
2秒前
蓝天白云完成签到,获得积分10
2秒前
紫荆完成签到 ,获得积分10
2秒前
DE应助单元波澜不惊采纳,获得10
3秒前
3秒前
3秒前
完美世界应助h7nho采纳,获得10
3秒前
谢大喵应助满意曼荷采纳,获得200
3秒前
CodeCraft应助lantian采纳,获得10
3秒前
orixero应助小云采纳,获得10
3秒前
一叶知秋应助欣慰友梅采纳,获得10
3秒前
西西发布了新的文献求助10
4秒前
清流发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
无头的小米完成签到,获得积分10
5秒前
十里八乡发布了新的文献求助10
5秒前
5秒前
俏皮小笼包完成签到,获得积分10
5秒前
钱多多发布了新的文献求助10
5秒前
蓝天白云发布了新的文献求助10
5秒前
裘香芦完成签到,获得积分10
5秒前
6秒前
6秒前
跳跃雨泽发布了新的文献求助10
6秒前
chifer发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
SSSSCCCCIIII发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707