Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unique发布了新的文献求助10
2秒前
2秒前
2秒前
Hsia完成签到,获得积分10
3秒前
Gabriel发布了新的文献求助10
3秒前
3秒前
Hello应助快乐再出发采纳,获得20
3秒前
4秒前
零医完成签到,获得积分10
4秒前
h3m发布了新的文献求助10
4秒前
4秒前
Zx_1993应助GINNY采纳,获得20
4秒前
4秒前
阿柒发布了新的文献求助10
5秒前
5秒前
Jian完成签到,获得积分10
5秒前
Criminology34应助轻松戎采纳,获得10
5秒前
xiaocen完成签到,获得积分10
6秒前
科研通AI6应助lulu采纳,获得10
6秒前
吕小布12完成签到,获得积分20
7秒前
李健应助略略略采纳,获得10
7秒前
yangyajie发布了新的文献求助10
7秒前
科研关注了科研通微信公众号
7秒前
哈基米德应助hauward采纳,获得20
7秒前
7秒前
浮游应助曹操采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
EXCELSIOR发布了新的文献求助10
9秒前
9秒前
脑洞疼应助hj采纳,获得10
9秒前
9秒前
Gandiva发布了新的文献求助10
9秒前
10秒前
qjw发布了新的文献求助10
10秒前
满意箴完成签到 ,获得积分10
11秒前
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得30
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430823
求助须知:如何正确求助?哪些是违规求助? 4543941
关于积分的说明 14189780
捐赠科研通 4462379
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437962
关于科研通互助平台的介绍 1414553