Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gmat50发布了新的文献求助10
刚刚
淼淼发布了新的文献求助10
刚刚
星辰大海应助yangzhuang采纳,获得10
1秒前
sa完成签到,获得积分10
1秒前
123发布了新的文献求助20
2秒前
2秒前
2秒前
3秒前
阿洁发布了新的文献求助10
3秒前
Mr祥发布了新的文献求助10
3秒前
余芝完成签到,获得积分10
5秒前
华仔应助mayamaya采纳,获得10
6秒前
丘比特应助st采纳,获得10
7秒前
酷炫的大碗完成签到,获得积分10
9秒前
充电宝应助Moses采纳,获得10
9秒前
724发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
wbshore发布了新的文献求助10
11秒前
11秒前
酷酷水之完成签到,获得积分10
11秒前
liars完成签到 ,获得积分10
11秒前
anna完成签到,获得积分10
12秒前
12秒前
左右完成签到,获得积分10
12秒前
2233完成签到 ,获得积分10
12秒前
13秒前
FashionBoy应助Lucky采纳,获得10
13秒前
zz完成签到,获得积分10
13秒前
14秒前
阳光下的味道完成签到,获得积分10
15秒前
匹夫发布了新的文献求助10
15秒前
青年才俊发布了新的文献求助10
16秒前
16秒前
李爱国应助anfly采纳,获得10
17秒前
CATH发布了新的文献求助10
17秒前
风浪里完成签到,获得积分10
18秒前
Li应助阿洁采纳,获得30
18秒前
科研通AI2S应助阿洁采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317648
求助须知:如何正确求助?哪些是违规求助? 4460126
关于积分的说明 13877368
捐赠科研通 4350368
什么是DOI,文献DOI怎么找? 2389368
邀请新用户注册赠送积分活动 1383539
关于科研通互助平台的介绍 1352917