Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 医学 心理学 古生物学 教育学 替代医学 数学 病理 数据库 纯数学 生物
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:86
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橘子发布了新的文献求助10
刚刚
1秒前
2秒前
fapaper完成签到,获得积分10
2秒前
小郭求学完成签到,获得积分20
2秒前
玉昆完成签到 ,获得积分10
2秒前
3秒前
妃妃飞完成签到,获得积分10
3秒前
Jasper应助大卫采纳,获得10
3秒前
爆米花应助温暖雨灵采纳,获得30
4秒前
GAO发布了新的文献求助10
4秒前
Fnnnn发布了新的文献求助10
6秒前
chen发布了新的文献求助10
6秒前
Drwenlu完成签到,获得积分10
6秒前
8秒前
9秒前
珊珊发布了新的文献求助10
12秒前
Fnnnn完成签到,获得积分10
13秒前
YZ完成签到,获得积分20
13秒前
fjm发布了新的文献求助10
13秒前
菲菲完成签到,获得积分20
14秒前
15秒前
fzh发布了新的文献求助10
15秒前
zzyuyu完成签到 ,获得积分10
16秒前
19秒前
da发布了新的文献求助10
20秒前
云行发布了新的文献求助10
21秒前
23秒前
天天发布了新的文献求助50
24秒前
传奇3应助fzh采纳,获得10
27秒前
BANG发布了新的文献求助10
30秒前
是瓜瓜不完成签到,获得积分10
36秒前
36秒前
文静的麦片完成签到,获得积分10
38秒前
40秒前
李冯程关注了科研通微信公众号
41秒前
42秒前
44秒前
量子星尘发布了新的文献求助10
44秒前
天天发布了新的文献求助50
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182