已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 医学 心理学 古生物学 教育学 替代医学 数学 病理 数据库 纯数学 生物
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:71
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
快乐天荷完成签到,获得积分10
4秒前
缥缈傥完成签到,获得积分10
4秒前
5秒前
000完成签到 ,获得积分10
5秒前
棠真完成签到 ,获得积分10
6秒前
artemis发布了新的文献求助10
7秒前
nassim完成签到,获得积分20
7秒前
糟糕的铁锤应助菜菜不菜采纳,获得50
8秒前
我桽完成签到 ,获得积分10
8秒前
是小小李哇完成签到 ,获得积分10
9秒前
wx完成签到 ,获得积分10
11秒前
Rn完成签到 ,获得积分10
11秒前
坚强元枫完成签到,获得积分10
11秒前
cindy完成签到,获得积分10
14秒前
斯文无敌完成签到,获得积分10
15秒前
爱学习的小李完成签到,获得积分10
15秒前
Mm完成签到,获得积分10
16秒前
18秒前
饱满跳跳糖完成签到,获得积分10
18秒前
李健应助zai采纳,获得10
18秒前
心灵美语兰完成签到 ,获得积分10
18秒前
anny.white完成签到,获得积分10
19秒前
kkk完成签到 ,获得积分10
19秒前
研友_8Y26PL完成签到 ,获得积分10
20秒前
23秒前
23秒前
Jinyang完成签到 ,获得积分10
23秒前
大个应助DJ国采纳,获得10
24秒前
小周完成签到 ,获得积分10
24秒前
25秒前
monair完成签到 ,获得积分10
26秒前
Bressanone完成签到,获得积分10
28秒前
逃离地球完成签到 ,获得积分10
28秒前
高高的笑柳完成签到 ,获得积分10
28秒前
Hosea发布了新的文献求助10
29秒前
黑大侠完成签到 ,获得积分10
29秒前
nuliguan完成签到 ,获得积分10
29秒前
小二郎应助问天采纳,获得10
29秒前
30秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463516
求助须知:如何正确求助?哪些是违规求助? 3056862
关于积分的说明 9054494
捐赠科研通 2746825
什么是DOI,文献DOI怎么找? 1507063
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695897