亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
客服小祥发布了新的文献求助10
刚刚
研友_LkD29n完成签到 ,获得积分10
9秒前
9秒前
申陌完成签到 ,获得积分20
15秒前
lige完成签到 ,获得积分10
28秒前
麻辣小龙虾完成签到,获得积分10
28秒前
Dylan完成签到 ,获得积分10
29秒前
jintian完成签到,获得积分10
29秒前
汉堡包应助Linlin采纳,获得10
32秒前
bluebell完成签到,获得积分10
36秒前
36秒前
一一应助Oli采纳,获得10
39秒前
44秒前
qq发布了新的文献求助10
47秒前
Linlin发布了新的文献求助10
49秒前
zhuo完成签到,获得积分10
51秒前
何为完成签到 ,获得积分10
56秒前
yaomuyao完成签到,获得积分10
56秒前
安静无招完成签到 ,获得积分10
59秒前
郭泓嵩完成签到,获得积分10
1分钟前
1分钟前
1分钟前
GPTea应助null采纳,获得20
1分钟前
闫聚鑫发布了新的文献求助10
1分钟前
顾矜应助Linlin采纳,获得10
1分钟前
null重新开启了橙果果文献应助
1分钟前
思源应助Bigqiaqia采纳,获得10
1分钟前
和谐诗双完成签到 ,获得积分10
1分钟前
王WW完成签到,获得积分10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
天凉王破完成签到 ,获得积分10
1分钟前
燃烧的荷包蛋完成签到,获得积分10
1分钟前
科研通AI6应助Am1r采纳,获得10
1分钟前
深情安青应助waomi采纳,获得10
1分钟前
OnlyHarbour完成签到,获得积分10
1分钟前
搞怪人雄完成签到,获得积分10
1分钟前
尼古拉斯铁柱完成签到 ,获得积分10
1分钟前
1947188918完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701351
关于积分的说明 14913380
捐赠科研通 4747722
什么是DOI,文献DOI怎么找? 2549198
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049