亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions

计算机科学 数据科学 大数据 可扩展性 背景(考古学) 信息隐私 转化式学习 人工智能 领域(数学) 数据共享 计算机安全 数据挖掘 生物 替代医学 纯数学 古生物学 病理 数据库 医学 数学 教育学 心理学
作者
Ashish Rauniyar,Desta Haileselassie Hagos,Debesh Jha,Jan Erik Håkegård,Ulaş Bağcı,Danda B. Rawat,Vladimir Vlassov
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 7374-7398 被引量:123
标识
DOI:10.1109/jiot.2023.3329061
摘要

With the advent of the Internet of Things (IoT), artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and Quality-of-Service (QoS) standards. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this article, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unraveling the complexities of designing reliable and scalable FL models. This article outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of FL, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. Recent literature has shown that FL models are robust and generalize well to new data, which is essential for medical applications. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state of the art and identifying open problems and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
梅荣庆完成签到 ,获得积分10
6秒前
evermore发布了新的文献求助10
7秒前
Jason完成签到 ,获得积分10
8秒前
执着的爆米花完成签到,获得积分10
9秒前
feng发布了新的文献求助10
10秒前
完美世界应助Li采纳,获得10
11秒前
paradox完成签到 ,获得积分10
16秒前
追寻夜香完成签到 ,获得积分10
17秒前
18秒前
科目三应助wang采纳,获得10
21秒前
鲤鱼山人完成签到 ,获得积分10
22秒前
可爱的函函应助azure采纳,获得10
34秒前
guan完成签到,获得积分10
35秒前
evermore发布了新的文献求助10
37秒前
Li发布了新的文献求助10
40秒前
44秒前
124发布了新的文献求助10
48秒前
bkagyin应助酒颜采纳,获得10
50秒前
59秒前
慧木发布了新的文献求助10
1分钟前
单薄绿竹完成签到,获得积分10
1分钟前
1分钟前
abc完成签到 ,获得积分0
1分钟前
azure发布了新的文献求助10
1分钟前
Jonathan完成签到,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
wang发布了新的文献求助10
1分钟前
精明的月亮完成签到 ,获得积分10
1分钟前
东方诩完成签到,获得积分10
1分钟前
挽星完成签到 ,获得积分10
1分钟前
充电宝应助酷炫的紫山采纳,获得10
1分钟前
汉堡包应助嘟嘟嘟采纳,获得10
1分钟前
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
feng完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515585
求助须知:如何正确求助?哪些是违规求助? 4608975
关于积分的说明 14514228
捐赠科研通 4545476
什么是DOI,文献DOI怎么找? 2490550
邀请新用户注册赠送积分活动 1472489
关于科研通互助平台的介绍 1444181