Building Socially Intelligent AI Systems: Evidence from the Trust Game Using Artificial Agents with Deep Learning

人工智能 感恩 计算机科学 构造(python库) 智能代理 人工神经网络 博弈论 心理学 社会心理学 微观经济学 经济 程序设计语言
作者
Jason Xianghua Wu,Wu Yan,Kay‐Yut Chen,Lei Hua
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (12): 7236-7252 被引量:9
标识
DOI:10.1287/mnsc.2023.4782
摘要

The trust game, a simple two-player economic exchange, is extensively used as an experimental measure for trust and trustworthiness of individuals. We construct deep neural network–based artificial intelligence (AI) agents to participate a series of experiments based upon the trust game. These artificial agents are trained by playing with one another repeatedly without any prior knowledge, assumption, or data regarding human behaviors. We find that, under certain conditions, AI agents produce actions that are qualitatively similar to decisions of human subjects reported in the trust game literature. Factors that influence the emergence and levels of cooperation by artificial agents in the game are further explored. This study offers evidence that AI agents can develop trusting and cooperative behaviors purely from an interactive trial-and-error learning process. It constitutes a first step to build multiagent-based decision support systems in which interacting artificial agents are capable of leveraging social intelligence to achieve better outcomes collectively. This paper was accepted by Yan Chen, behavioral economics and decision analysis. Funding: Y. (D.) Wu extends her gratitude for the financial support provided through the RSCA Seed [Grant 22-RSG-01-004] from the San Jose State University. Supplemental Material: Data are available at https://doi.org/10.1287/mnsc.2023.4782 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Hao完成签到,获得积分10
2秒前
5秒前
Maliketh应助科研通管家采纳,获得20
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
安好发布了新的文献求助10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
dbdxyty完成签到,获得积分10
6秒前
田様应助精明的丹云采纳,获得10
6秒前
今天没烦恼完成签到 ,获得积分0
7秒前
风渐渐完成签到,获得积分20
7秒前
7秒前
ty12390发布了新的文献求助10
7秒前
8秒前
anna1992发布了新的文献求助10
10秒前
风渐渐发布了新的文献求助30
11秒前
开朗的傲儿完成签到 ,获得积分10
11秒前
NexusExplorer应助中国郎采纳,获得10
11秒前
熹微发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
彦卿完成签到,获得积分20
14秒前
14秒前
丘比特应助冰凝668采纳,获得10
15秒前
lmj完成签到,获得积分20
15秒前
斯文败类应助long采纳,获得10
16秒前
ty12390完成签到,获得积分10
16秒前
紧张的蘑菇完成签到,获得积分10
16秒前
17秒前
DDDD发布了新的文献求助10
17秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3703934
求助须知:如何正确求助?哪些是违规求助? 3253550
关于积分的说明 9884349
捐赠科研通 2965471
什么是DOI,文献DOI怎么找? 1626339
邀请新用户注册赠送积分活动 770654
科研通“疑难数据库(出版商)”最低求助积分说明 743000