Building Socially Intelligent AI Systems: Evidence from the Trust Game Using Artificial Agents with Deep Learning

人工智能 感恩 计算机科学 构造(python库) 智能代理 人工神经网络 博弈论 心理学 社会心理学 微观经济学 经济 程序设计语言
作者
Jason Xianghua Wu,Wu Yan,Kay‐Yut Chen,Lei Hua
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (12): 7236-7252 被引量:6
标识
DOI:10.1287/mnsc.2023.4782
摘要

The trust game, a simple two-player economic exchange, is extensively used as an experimental measure for trust and trustworthiness of individuals. We construct deep neural network–based artificial intelligence (AI) agents to participate a series of experiments based upon the trust game. These artificial agents are trained by playing with one another repeatedly without any prior knowledge, assumption, or data regarding human behaviors. We find that, under certain conditions, AI agents produce actions that are qualitatively similar to decisions of human subjects reported in the trust game literature. Factors that influence the emergence and levels of cooperation by artificial agents in the game are further explored. This study offers evidence that AI agents can develop trusting and cooperative behaviors purely from an interactive trial-and-error learning process. It constitutes a first step to build multiagent-based decision support systems in which interacting artificial agents are capable of leveraging social intelligence to achieve better outcomes collectively. This paper was accepted by Yan Chen, behavioral economics and decision analysis. Funding: Y. (D.) Wu extends her gratitude for the financial support provided through the RSCA Seed [Grant 22-RSG-01-004] from the San Jose State University. Supplemental Material: Data are available at https://doi.org/10.1287/mnsc.2023.4782 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
时有落花至完成签到,获得积分10
1秒前
1秒前
1秒前
可爱的函函应助CQ采纳,获得10
4秒前
4秒前
程院发布了新的文献求助10
5秒前
浅尝离白应助故城采纳,获得10
6秒前
义气完成签到 ,获得积分10
6秒前
jihui发布了新的文献求助10
7秒前
木忻发布了新的文献求助10
7秒前
冷静的豪发布了新的文献求助10
8秒前
8秒前
Chris发布了新的文献求助10
9秒前
9秒前
未来星完成签到,获得积分20
10秒前
11秒前
freya发布了新的文献求助30
14秒前
完美世界应助冷静的豪采纳,获得10
15秒前
魏俏红完成签到,获得积分10
15秒前
Matrix发布了新的文献求助30
15秒前
希望天下0贩的0应助程院采纳,获得10
16秒前
未来星发布了新的文献求助10
17秒前
稳重小虾米完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
天天快乐应助碗碗采纳,获得10
19秒前
英姑应助直率的高烽采纳,获得10
20秒前
20秒前
21秒前
LeoJun完成签到,获得积分10
21秒前
22秒前
22秒前
CQ发布了新的文献求助10
22秒前
gate完成签到,获得积分10
24秒前
wp发布了新的文献求助10
25秒前
初昀杭发布了新的文献求助10
25秒前
陌君子筱发布了新的文献求助10
25秒前
57发布了新的文献求助10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226