Genetic algorithm for feature selection in mammograms for breast masses classification

人工智能 计算机科学 特征选择 粒子群优化 朴素贝叶斯分类器 算法 机器学习 计算机辅助设计 特征(语言学) 模式识别(心理学) 支持向量机 工程类 语言学 哲学 工程制图
作者
G. Suganthi,J. Sutha,M Parvathy,N.Tamil Selvi
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/21681163.2023.2266031
摘要

ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jincheng_jcs完成签到,获得积分10
刚刚
iNk应助將雨采纳,获得20
刚刚
Sci完成签到,获得积分10
刚刚
彭于晏发布了新的文献求助10
刚刚
x971017完成签到,获得积分10
1秒前
梦槐完成签到,获得积分10
1秒前
风息完成签到,获得积分10
1秒前
洋洋应助YSHZ采纳,获得10
1秒前
甜美的月饼完成签到,获得积分10
1秒前
坚强成风完成签到,获得积分10
1秒前
无辜的朋友完成签到,获得积分10
2秒前
小曹硕士完成签到,获得积分10
2秒前
愣头青完成签到,获得积分10
2秒前
2秒前
3秒前
ljl完成签到,获得积分10
3秒前
想喝奶茶发布了新的文献求助10
3秒前
FAN完成签到,获得积分10
3秒前
bkagyin应助铅笔刀采纳,获得10
3秒前
lxl1996完成签到,获得积分10
3秒前
瘦瘦的鬼神完成签到,获得积分10
4秒前
听闻墨笙发布了新的文献求助30
4秒前
英姑应助江哥采纳,获得10
4秒前
阿科完成签到 ,获得积分10
4秒前
5秒前
长江长完成签到,获得积分20
5秒前
飞快的雅青完成签到 ,获得积分10
6秒前
等待的鞯完成签到 ,获得积分20
6秒前
大胆的娩完成签到,获得积分10
7秒前
田様应助玉玉采纳,获得10
7秒前
Dritsw应助CAAA采纳,获得10
7秒前
东木应助啦啦啦采纳,获得20
7秒前
ZCX完成签到,获得积分10
8秒前
Jasper应助文献自由侠采纳,获得10
8秒前
武状元发布了新的文献求助10
8秒前
LLY发布了新的文献求助20
8秒前
8秒前
彭于彦祖应助zzz采纳,获得20
8秒前
呆鹅喵喵完成签到,获得积分10
9秒前
乘风破浪发布了新的文献求助20
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740