Genetic algorithm for feature selection in mammograms for breast masses classification

人工智能 计算机科学 特征选择 粒子群优化 朴素贝叶斯分类器 算法 机器学习 计算机辅助设计 特征(语言学) 模式识别(心理学) 支持向量机 工程类 语言学 哲学 工程制图
作者
G. Suganthi,J. Sutha,M Parvathy,N.Tamil Selvi
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Informa]
卷期号:: 1-12
标识
DOI:10.1080/21681163.2023.2266031
摘要

ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧水之完成签到 ,获得积分10
1秒前
杨颖完成签到,获得积分10
1秒前
柳贯一发布了新的文献求助30
1秒前
God完成签到,获得积分10
2秒前
香蕉觅云应助现实的一天采纳,获得10
2秒前
2秒前
山月系晚星完成签到,获得积分10
3秒前
花火易逝发布了新的文献求助10
3秒前
茉行完成签到,获得积分10
3秒前
3秒前
4秒前
关于我发布了新的文献求助10
4秒前
平凡完成签到,获得积分10
4秒前
魏你大爷完成签到,获得积分10
4秒前
莴苣完成签到,获得积分10
5秒前
wxf完成签到,获得积分10
5秒前
5秒前
过时的沛槐完成签到,获得积分10
5秒前
5秒前
科研通AI6应助碧琴采纳,获得10
5秒前
分析完成签到 ,获得积分10
6秒前
生活散文发布了新的文献求助10
6秒前
6秒前
6秒前
陈圈圈完成签到,获得积分10
6秒前
Orange应助研友_LBorkn采纳,获得10
6秒前
炙热笑旋完成签到,获得积分10
7秒前
田様应助ding采纳,获得10
7秒前
喵喵喵完成签到,获得积分10
7秒前
SonRisa完成签到,获得积分10
7秒前
哭泣的花卷完成签到,获得积分10
7秒前
8秒前
8秒前
哈儿的跟班完成签到,获得积分10
8秒前
8秒前
潮湿梦完成签到,获得积分10
8秒前
关耳发布了新的文献求助10
9秒前
花火易逝完成签到,获得积分10
9秒前
简单点完成签到 ,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977