Genetic algorithm for feature selection in mammograms for breast masses classification

人工智能 计算机科学 特征选择 粒子群优化 朴素贝叶斯分类器 算法 机器学习 计算机辅助设计 特征(语言学) 模式识别(心理学) 支持向量机 工程类 语言学 哲学 工程制图
作者
G. Suganthi,J. Sutha,M Parvathy,N.Tamil Selvi
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/21681163.2023.2266031
摘要

ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xybjt完成签到 ,获得积分10
刚刚
巴达天使完成签到,获得积分10
6秒前
江三村完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
24秒前
CyberHamster完成签到,获得积分10
34秒前
xiaohong完成签到,获得积分10
37秒前
朱比特完成签到,获得积分10
38秒前
39秒前
zmuzhang2019发布了新的文献求助10
45秒前
onestepcloser完成签到 ,获得积分0
45秒前
zoe完成签到 ,获得积分10
46秒前
发嗲的慕蕊完成签到 ,获得积分10
47秒前
Linson完成签到,获得积分10
48秒前
顾矜应助赵三岁采纳,获得10
1分钟前
yyy2025完成签到,获得积分10
1分钟前
木雨亦潇潇完成签到,获得积分10
1分钟前
香蕉觅云应助nine2652采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
土豆丝完成签到 ,获得积分10
1分钟前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
2分钟前
2分钟前
2分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
2分钟前
能干冰露完成签到,获得积分10
2分钟前
牛奶拌可乐完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
周小鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
老张完成签到,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022