Genetic algorithm for feature selection in mammograms for breast masses classification

人工智能 计算机科学 特征选择 粒子群优化 朴素贝叶斯分类器 算法 机器学习 计算机辅助设计 特征(语言学) 模式识别(心理学) 支持向量机 工程类 语言学 哲学 工程制图
作者
G. Suganthi,J. Sutha,M Parvathy,N.Tamil Selvi
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Informa]
卷期号:: 1-12
标识
DOI:10.1080/21681163.2023.2266031
摘要

ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
B612小行星完成签到,获得积分10
1秒前
沈青樾发布了新的文献求助10
1秒前
1秒前
俏皮连虎完成签到,获得积分10
1秒前
GSQ发布了新的文献求助10
1秒前
summuryi完成签到,获得积分20
2秒前
孤芳不自赏完成签到,获得积分10
2秒前
sunsunsun完成签到,获得积分10
2秒前
qiao完成签到,获得积分10
3秒前
xyb发布了新的文献求助10
3秒前
3秒前
3秒前
尹辉发布了新的文献求助10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
4秒前
斧王发布了新的文献求助10
4秒前
老福贵儿应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助致语采纳,获得10
4秒前
sevenhill应助科研通管家采纳,获得10
4秒前
4秒前
老福贵儿应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
斯文败类应助耍酷的梦桃采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
SJJ应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
bkagyin应助罗马采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI6应助愤怒的鲨鱼采纳,获得10
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
5秒前
SJJ应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654