Genetic algorithm for feature selection in mammograms for breast masses classification

人工智能 计算机科学 特征选择 粒子群优化 朴素贝叶斯分类器 算法 机器学习 计算机辅助设计 特征(语言学) 模式识别(心理学) 支持向量机 工程类 语言学 哲学 工程制图
作者
G. Suganthi,J. Sutha,M Parvathy,N.Tamil Selvi
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Informa]
卷期号:: 1-12
标识
DOI:10.1080/21681163.2023.2266031
摘要

ABSTRACTThis paper introduces a Computer-Aided Detection (CAD) system for categorizing breast masses in mammogram images from the DDSM database as Benign, Malignant, or Normal. The CAD process involves Pre-processing, Segmentation, Feature Extraction, Feature Selection, and Classification. Three feature selection methods, namely the Genetic Algorithm (GA), t-test, and Particle Swarm Optimization (PSO) are used. In the classification phase, three machine learning algorithms (kNN, multiSVM, and Naive Bayes) are explored. Evaluation metrics like accuracy, AUC, precision, recall, F1-score, MCC, Dice coefficient, and Jaccard coefficient are used for performance assessment. Training and testing accuracy are assessed for the three classes. The system is evaluated using nine algorithm combinations, producing the following AUC values: GA+kNN (0.93), GA+multiSVM (0.88), GA+NB (0.91), t-test+kNN (0.91), t-test+multiSVM (0.86), t-test+NB (0.89), PSO+kNN (0.89), PSO+multiSVM (0.85), and PSO+NB (0.86). The study shows that the GA and kNN combination outperforms others.KEYWORDS: Mammogramsbreast massfeature selectionGenetic algorithm Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingNo funding is used to complete this project.Notes on contributors G Vaira SuganthiDr. Vaira Suganthi G has 20 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. J SuthaDr. Sutha J has more than 25 years of teaching experience. Her area of interest includes Image Processing and Machine Learning. M ParvathyDr. Parvathy M has more than 20 years of teaching experience. Her area of interest include Image Processing, Data Mining, and Machine Learning.N Muthamil SelviMs. Muthamil Selvi N has 1 year of teaching experience. Her area of interest is Machine Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助曾经阁采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得30
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
CWNU_HAN应助科研通管家采纳,获得30
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
咖啡豆应助科研通管家采纳,获得10
3秒前
大锤应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
dd完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得20
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
陌小千完成签到 ,获得积分10
3秒前
lan完成签到,获得积分10
3秒前
小致发布了新的文献求助10
4秒前
4秒前
5秒前
中央戏精学院完成签到,获得积分10
5秒前
优美一寡完成签到,获得积分10
6秒前
Charlotte完成签到 ,获得积分10
8秒前
李爱国应助啥也不懂采纳,获得10
8秒前
午见千山应助lan采纳,获得10
10秒前
摆烂fish完成签到,获得积分10
11秒前
林林完成签到,获得积分10
12秒前
12秒前
马界泡泡发布了新的文献求助10
13秒前
吉岭茶完成签到,获得积分10
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226