Encoder-Free Multiaxis Physics-Aware Fusion Network for Remote Sensing Image Dehazing

计算机科学 编码器 人工智能 块(置换群论) 特征(语言学) 管道(软件) 特征学习 代表(政治) 计算机视觉 操作系统 法学 程序设计语言 哲学 几何学 政治 语言学 数学 政治学
作者
Yuanbo Wen,Tao Gao,Jing Zhang,Ziqi Li,Ting Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:66
标识
DOI:10.1109/tgrs.2023.3325927
摘要

Current methods for remote sensing image dehazing confront noteworthy computational intricacies and yield suboptimal dehazed outputs, thereby circumscribing their pragmatic applicability. To this end, we propose EMPF-Net, a novel encoder-free multi-axis physics-aware fusion network that exhibits both light-weighted characteristics and computational efficiency. In our pipeline, we contend that conventional u-shaped networks allocate substantial computational resources to encode haze-degraded features, which play a subordinate role in the reconstruction process. Consequently, our encoder stages solely incorporate down-sampling operations. To improve the representation efficiency and enhance the generalization capabilities, we devise a multi-axis partial queried learning block (MPQLB) that primarily concentrates on learning dimension-wise queries, instead of relying solely on strictly-correlated content of the input features. Furthermore, we augment the reconstruction procedure by incorporating ground truth supervision into each stage via a supervised cross-scale transposed attention module (SCTAM). It calculates attention maps under the guidance of clean images, thereby suppressing less informative features to propagate to the subsequent level. In addition, to address the challenge of ineffective intral-level feature fusion, which result in insufficient elimination of haze-degraded information and negatively impact the quality of reconstructed images, we introduce a physics-aware intra-level fusion module (PIFM). This module harnesses a physical inversion model to facilitate the intra-level feature interaction and alleviate the interference of dehazing-irrelevant information. Our proposed EMPF-Net is evaluated on 12 publicly available datasets, and the experimental results substantiate our superiority in terms of both metrical scores and visual quality, despite being equipped with a modest parameter count of 300 K. Our approach is readily accessible at https://github.com/chdwyb/EMPF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lv发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Owen应助菠萝李采纳,获得10
2秒前
2秒前
俞跃完成签到,获得积分10
2秒前
知不知发布了新的文献求助10
2秒前
natmed应助milka采纳,获得20
2秒前
黄义发布了新的文献求助10
2秒前
xu完成签到,获得积分10
3秒前
Inory007完成签到,获得积分10
3秒前
tianmafei发布了新的文献求助10
3秒前
4秒前
4秒前
Owen应助盛欢采纳,获得10
5秒前
Nano完成签到,获得积分10
5秒前
6秒前
SciGPT应助速速來電采纳,获得10
6秒前
新乔完成签到,获得积分10
6秒前
旺旺碎冰冰完成签到,获得积分10
6秒前
黄嘉慧完成签到 ,获得积分10
6秒前
甜甜弘文完成签到,获得积分20
7秒前
寒冷的沛珊完成签到,获得积分10
7秒前
俏皮麦片完成签到,获得积分10
7秒前
8秒前
RFZTSYDH完成签到,获得积分10
8秒前
baocq发布了新的文献求助10
8秒前
9秒前
9秒前
四叶草给四叶草的求助进行了留言
9秒前
zhuang完成签到,获得积分10
9秒前
elidan发布了新的文献求助10
10秒前
广泛的发布了新的文献求助10
10秒前
un完成签到,获得积分10
10秒前
赘婿应助spz150采纳,获得10
11秒前
11秒前
11秒前
包包琪发布了新的文献求助10
14秒前
liao应助晨烨采纳,获得10
14秒前
EKKO完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108