亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CMRFusion: A cross-domain multi-resolution fusion method for infrared and visible image fusion

计算机科学 人工智能 计算机视觉 编码器 图像融合 融合 红外线的 融合规则 图像(数学) 模式识别(心理学) 领域(数学分析) 光学 数学 物理 数学分析 语言学 哲学 操作系统
作者
Zhang Xiong,Yuanjia Cao,Xiaohui Zhang,Qingping Hu,Hongwei Han
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:170: 107765-107765 被引量:3
标识
DOI:10.1016/j.optlaseng.2023.107765
摘要

Existing multi-resolution infrared and visible image fusion methods suffer from the weak ability of texture detail preservation, which restricts the practical application. In this paper, we proposed a cross-domain multi-resolution infrared and visible image fusion method, CMRFusion, based on auto-encoder networks and a cross-domain attention fusion strategy. Auto-encoder networks are adopted to extract deep multi-scale features with encoder networks and reconstruct images with decoder networks. The cross-domain attention fusion strategy is adopted to promote the preservation of texture detail from one of the source images. In the proposed method, low-resolution infrared images are firstly up-scaled by a simple bicubic strategy to match the resolution of source images. Then, an encoder network is adopted to extract features from infrared and visible images. The extracted features of the infrared image are served as the base and supplemented with details in the extracted features from the visible image through a cross-domain attention fusion strategy to obtain the fused features to reconstruct high-resolution infrared images with the first decoder network. Finally, the encoder network is adopted to extract features from visible and reconstructed infrared images. The extracted features of the visible image are served as the base and supplemented with details in the extracted features from the reconstructed high-resolution infrared image through a cross-domain attention fusion strategy to obtain the fused features to reconstruct the fusion result with the second decoder network. The qualitative and quantitative experiments conducted on the TNO, OSU, and MSRS datasets indicate that CMRFusion can balance the information from source images and well-retain texture detail from the visible image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张泽崇发布了新的文献求助10
2秒前
1206425219密完成签到,获得积分10
11秒前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
Aliothae完成签到,获得积分20
1分钟前
科研通AI5应助929采纳,获得10
1分钟前
HLT完成签到 ,获得积分10
1分钟前
2分钟前
小秋发布了新的文献求助10
2分钟前
CC完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
Jero21发布了新的文献求助10
3分钟前
小秋完成签到,获得积分10
3分钟前
Jero21完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
GIA完成签到,获得积分10
4分钟前
4分钟前
Marshall完成签到 ,获得积分10
5分钟前
范振杰完成签到,获得积分10
5分钟前
5分钟前
Hayat应助科研通管家采纳,获得10
5分钟前
赘婿应助科研通管家采纳,获得30
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
6分钟前
libob关注了科研通微信公众号
7分钟前
852应助libob采纳,获得10
7分钟前
大模型应助科研通管家采纳,获得10
7分钟前
7分钟前
LuoYixiang发布了新的文献求助10
8分钟前
牛八先生完成签到,获得积分10
8分钟前
LuoYixiang完成签到,获得积分10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216