Multiple Classification Network of Concrete Defects Based on Improved EfficientNetV2

计算机科学 棱锥(几何) 桥(图论) 人工智能 特征(语言学) 模式识别(心理学) 特征提取 人工神经网络 曲面(拓扑) 数据挖掘 数学 医学 语言学 哲学 内科学 几何学
作者
Jiawei Ni,Bing Wang,Kun Lu,Jun Zhang,Peng Chen,Li-lan Pan,Chenxiao Zhu,Bing Wang,Wenyan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 626-638 被引量:2
标识
DOI:10.1007/978-981-99-4742-3_52
摘要

The quality of concrete is crucial for the safety of facilities. Specifically, the ex-posed surface defects of the bridge seriously affect its strength and aesthetics. However, due to the influence of weather and light, different types of defects on the concrete surface may potentially overlap, making it difficult for classification algorithms to identify concrete surface defects. Traditional recognition methods based on human observation are unreliable and time-consuming, while automatic recognition methods based on computer vision have limitations in identifying multiple defects simultaneously. In this work, a multi-classification network based on improved EfficientNetV2 [1] is proposed to identify multiple defects simultaneously, in which EfficientNetV2 was used as the backbone to ensure the accuracy of feature extraction, and the spatial pyramid pool structure was combined to achieve multiple label classifications [2]. The results show that the accuracy of the concrete defect multi classification network based on EfficientNetV2 reaches 77.6%, with an average classification accuracy of over 94%. This emphasizes the effectiveness of our method in concrete defect recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
刚刚
GQ完成签到,获得积分10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
FanFan应助科研通管家采纳,获得10
刚刚
刚刚
空啊空发布了新的文献求助10
刚刚
1秒前
顾矜应助Yantuobio采纳,获得10
1秒前
aaaa完成签到,获得积分10
2秒前
柠檬发布了新的文献求助20
2秒前
眯眯眼的枕头完成签到,获得积分10
2秒前
ixueyi完成签到,获得积分10
2秒前
打打应助lvzhihao采纳,获得10
2秒前
N1koooooo发布了新的文献求助10
2秒前
研团子完成签到,获得积分10
2秒前
2秒前
明亮若枫发布了新的文献求助10
3秒前
CHEE完成签到 ,获得积分10
3秒前
FashionBoy应助风华笔墨采纳,获得10
4秒前
ZZ发布了新的文献求助10
4秒前
4秒前
xiaoxiao发布了新的文献求助10
5秒前
潮哈哈耶完成签到,获得积分10
5秒前
6秒前
GEeZiii发布了新的文献求助10
6秒前
6秒前
可耐的冰萍完成签到,获得积分10
6秒前
哈哈哈哈哈哈完成签到,获得积分10
7秒前
求知的土拨鼠完成签到,获得积分10
7秒前
北风发布了新的文献求助10
7秒前
研团子发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
9秒前
希望天下0贩的0应助华琪采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794