Uncertainty in vulnerability of metro transit networks: A global perspective

脆弱性(计算) 拓扑(电路) 复杂网络 脆弱性评估 网络拓扑 过境(卫星) 计算机科学 渗透(认知心理学) 地理 计算机安全 工程类 计算机网络 运输工程 公共交通 心理学 电气工程 心理弹性 万维网 心理治疗师 神经科学 生物
作者
Alireza Ermagun,Nazanin Tajik,Fatemeh Janatabadi,Hani Mahmassani
出处
期刊:Journal of Transport Geography [Elsevier]
卷期号:113: 103710-103710 被引量:10
标识
DOI:10.1016/j.jtrangeo.2023.103710
摘要

This study measures the “uncertainty in vulnerability” of 50 metro transit networks in the most populated cities across the globe under benign and malicious attack scenarios. Uncertainty in vulnerability delineates the gap between the performance loss trajectory formed by link percolation under benign and malicious attacks. Three observations are discerned. First, vulnerability and uncertainty in vulnerability are a function of both size and physics of the network explained by connectivity measures. A 1% increase in the ratio of links to nodes increases the vulnerability by 0.50% and increases the uncertainty in vulnerability by 2.24%. A 1% increase in the ratio of the number of links to the maximum possible number of links decreases vulnerability by 0.03% and the uncertainty in vulnerability by 0.12%. Second, the topology of metro transit networks with <100 nodes follows one of the three analogous forms of tree-shaped networks, networks with one undirected cycle, or single depot networks, while the topology of metro transit networks with ≥100 nodes is closer to grid and matching pairs. Third, metro transit networks (i) are less likely to resume the operation under malicious attacks, (ii) are more likely to resume the operation under benign attacks, and (iii) are susceptible to both severe and non-severe degradations under random attacks. Overall, it is shown that the most vulnerable transit networks experience the maximal uncertainty in vulnerability and own a topology analogous to a single depot. New York, Delhi, and London metro transit networks have the most vulnerable topology. Ahmedabad, Mumbai, and Sydney metro transit networks have the least vulnerable topology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
嘴角微微仰起笑完成签到,获得积分0
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
michael发布了新的文献求助10
2秒前
传奇3应助Lorene采纳,获得10
2秒前
3秒前
easterway发布了新的文献求助10
3秒前
claud发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
孙浩洋发布了新的文献求助10
5秒前
6秒前
热心的忆山完成签到,获得积分10
6秒前
Duckseid发布了新的文献求助10
6秒前
Xie完成签到,获得积分10
6秒前
Alex完成签到,获得积分10
6秒前
zhangwj226完成签到,获得积分10
6秒前
Planta完成签到,获得积分10
7秒前
7秒前
领导范儿应助lcc采纳,获得10
7秒前
velpro发布了新的文献求助10
7秒前
山山而川发布了新的文献求助10
7秒前
8秒前
xia发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
ybwei2008_163发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
早睡同学发布了新的文献求助10
10秒前
10秒前
10秒前
丰富的冰棍完成签到 ,获得积分10
10秒前
jj发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667199
求助须知:如何正确求助?哪些是违规求助? 4884533
关于积分的说明 15119115
捐赠科研通 4826074
什么是DOI,文献DOI怎么找? 2583722
邀请新用户注册赠送积分活动 1537874
关于科研通互助平台的介绍 1496008