Uncertainty in vulnerability of metro transit networks: A global perspective

脆弱性(计算) 拓扑(电路) 复杂网络 脆弱性评估 网络拓扑 过境(卫星) 计算机科学 渗透(认知心理学) 地理 计算机安全 工程类 计算机网络 运输工程 公共交通 心理学 电气工程 心理弹性 万维网 心理治疗师 神经科学 生物
作者
Alireza Ermagun,Nazanin Tajik,Fatemeh Janatabadi,Hani Mahmassani
出处
期刊:Journal of Transport Geography [Elsevier]
卷期号:113: 103710-103710 被引量:10
标识
DOI:10.1016/j.jtrangeo.2023.103710
摘要

This study measures the “uncertainty in vulnerability” of 50 metro transit networks in the most populated cities across the globe under benign and malicious attack scenarios. Uncertainty in vulnerability delineates the gap between the performance loss trajectory formed by link percolation under benign and malicious attacks. Three observations are discerned. First, vulnerability and uncertainty in vulnerability are a function of both size and physics of the network explained by connectivity measures. A 1% increase in the ratio of links to nodes increases the vulnerability by 0.50% and increases the uncertainty in vulnerability by 2.24%. A 1% increase in the ratio of the number of links to the maximum possible number of links decreases vulnerability by 0.03% and the uncertainty in vulnerability by 0.12%. Second, the topology of metro transit networks with <100 nodes follows one of the three analogous forms of tree-shaped networks, networks with one undirected cycle, or single depot networks, while the topology of metro transit networks with ≥100 nodes is closer to grid and matching pairs. Third, metro transit networks (i) are less likely to resume the operation under malicious attacks, (ii) are more likely to resume the operation under benign attacks, and (iii) are susceptible to both severe and non-severe degradations under random attacks. Overall, it is shown that the most vulnerable transit networks experience the maximal uncertainty in vulnerability and own a topology analogous to a single depot. New York, Delhi, and London metro transit networks have the most vulnerable topology. Ahmedabad, Mumbai, and Sydney metro transit networks have the least vulnerable topology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yolo发布了新的文献求助10
刚刚
2秒前
无极微光应助出其东门采纳,获得20
2秒前
李健应助小鱼采纳,获得10
2秒前
按时毕业的小王完成签到,获得积分10
3秒前
3秒前
钟梓袄发布了新的文献求助10
3秒前
4秒前
科研通AI6.1应助111采纳,获得10
6秒前
6秒前
山茶发布了新的文献求助10
6秒前
领导范儿应助叶琳采纳,获得10
6秒前
不狗不吹发布了新的文献求助10
7秒前
cy发布了新的文献求助10
7秒前
心声发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
慕青应助haocheng采纳,获得10
8秒前
郑敏关注了科研通微信公众号
8秒前
脑洞疼应助东1991采纳,获得10
10秒前
NexusExplorer应助shinn采纳,获得10
11秒前
小狗博士发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI6.1应助cy采纳,获得10
13秒前
Lucas应助cy采纳,获得10
13秒前
今后应助HH采纳,获得10
14秒前
科研通AI6.1应助xiankanyun采纳,获得30
15秒前
盯盯盯完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
xinasoooo完成签到 ,获得积分10
16秒前
Una关注了科研通微信公众号
16秒前
causjz完成签到,获得积分20
17秒前
Lulu发布了新的文献求助10
17秒前
CodeCraft应助lllll采纳,获得10
17秒前
18秒前
18秒前
小鱼发布了新的文献求助10
18秒前
18秒前
小狗博士完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741