RFIS-HI: a new health indicator for quantitative condition monitoring of the bearing under variable speed conditions

计算机科学 方位(导航) 信号(编程语言) 频域 时域 断层(地质) 相似性(几何) 度量(数据仓库) 噪音(视频) 理论(学习稳定性) 振幅 数据挖掘 人工智能 机器学习 计算机视觉 地震学 图像(数学) 程序设计语言 地质学 量子力学 物理
作者
Weipeng Ma,Yaoxiang Yu,Liang Guo,Mengui Qian,Hongli Gao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2407-2422 被引量:4
标识
DOI:10.1177/14759217231203244
摘要

The health indicator (HI) plays a crucial role in the condition monitoring of the rolling bearing. However, most existing HIs exhibit significant fluctuations when the speed changes. To address the issue, this paper proposes a new HI namely reweighted fault impact strength (RFIS)-HI. First, sub-signals are obtained through a frequency division strategy, and corresponding resampled signals are derived using order tracking. Second, the average impact peak in the time domain is acquired to measure the impact of the signal. According to fault characteristic order (FCO), the ratio of FCOs summation to noise amplitude in the frequency domain is obtained to measure periodicity. Then, the FISgram is constructed for selecting the optimal frequency band. To better quantify the degradation degree of the bearing, different weights are assigned and optimized for constructing RFIS. Finally, the influence of rotational speed on RFIS is eliminated by utilizing prior knowledge. Taking the first 10% of the dataset as baseline data, RFIS-HI is constructed through relative similarity. In this paper, a bearing dataset under time-varying speed conditions and an XJTU-SY dataset are used for verification. Results show that the proposed HI can achieve better trendability, scale similarity, and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然不言完成签到 ,获得积分10
刚刚
刚刚
可可完成签到 ,获得积分10
刚刚
刚刚
聪慧的娜发布了新的文献求助10
1秒前
韶冰蓝发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
Leeyee发布了新的文献求助10
5秒前
yunidesuuu发布了新的文献求助10
6秒前
7秒前
cc完成签到,获得积分10
7秒前
科研通AI2S应助Leeny采纳,获得10
7秒前
CXC完成签到,获得积分10
7秒前
8秒前
modesty完成签到,获得积分10
9秒前
9秒前
科研小白发布了新的文献求助20
10秒前
11秒前
单纯夏烟完成签到,获得积分10
11秒前
modesty发布了新的文献求助10
11秒前
甜甜芾应助念雪儿吖采纳,获得10
11秒前
热心丹翠关注了科研通微信公众号
12秒前
12秒前
12秒前
开心饼干发布了新的文献求助30
12秒前
酷波er应助端庄的越彬采纳,获得10
12秒前
共享精神应助winew采纳,获得10
15秒前
15秒前
16秒前
cccc完成签到,获得积分10
16秒前
梁晓玲发布了新的文献求助10
17秒前
阿燕发布了新的文献求助10
17秒前
科研通AI5应助ZZ采纳,获得10
17秒前
zhinian完成签到 ,获得积分10
17秒前
17秒前
18秒前
MOMO发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800001
求助须知:如何正确求助?哪些是违规求助? 3345347
关于积分的说明 10324720
捐赠科研通 3061849
什么是DOI,文献DOI怎么找? 1680569
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763502