选择性
催化作用
吸附
化学
密度泛函理论
化学工程
无机化学
组合化学
计算化学
有机化学
工程类
作者
Caiyun Han,Langlang Qin,Peng Wang,Haotian Zhang,Yunfei Gao,Minghui Zhu,Shuang Wang,Jinping Li
出处
期刊:Fuel
[Elsevier BV]
日期:2023-09-29
卷期号:357: 129945-129945
被引量:7
标识
DOI:10.1016/j.fuel.2023.129945
摘要
Growing interest has been shown in controlling the selectivity of CO2 hydrogenation to produce specific compounds and fuels with additional value. However, it is challenging to selectively generate target products due to the complexity and diversity of the products in CO2 hydrogenation reaction. Herein, we reported a finding in the CO2 hydrogenation reaction: selectivity could be totally reversed by just altering support interface types on Cu-based catalysts. Cu/ZnO-MgO catalysts showed high CH3OH selectivity, while Cu/ZnO-CoO catalysts exhibited good selectivity of CH4. According to in-depth characterization, varied basicity sites most likely as results of the different support interface types. Density functional theory (DFT) calculations pointed that support interface types altered the adsorption position of H2COO* on catalysts and affect the adsorption and activation of intermediates, and thus resulted in noticeably varied product selectivity. This study demonstrated the value of regulating CO2 hydrogenation selectivity via support interface types on Cu-based catalysts, which can aid in the rational design of catalysts for not only CO2 hydrogenation but also other significant reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI