Development and validation of a nomogram for predicting pulmonary infections after Intracerebral hemorrhage in elderly people

列线图 医学 接收机工作特性 逻辑回归 曲线下面积 脑出血 重症监护室 格拉斯哥昏迷指数 队列 内科学 急诊医学 外科
作者
Yang Liu,Lu Zhao,Xing‐Ping Li,Jiangqin Han,Mingtong Bian,Xiaowei Sun,Fuyan Chen
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier BV]
卷期号:32 (12): 107444-107444
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107444
摘要

Objectives The purpose of this study was to develop and validate a nomogram for the prediction of pulmonary infections in elderly patients with intracerebral hemorrhage (ICH) during hospitalization in the intensive care unit (ICU). Methods A total of 1183 elderly patients diagnosed with ICH were included from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and randomly grouped into training (n=831) and validation (n=352) cohorts. Candidate predictors were identified using the least absolute shrinkage and selection operator (LASSO) regression. Meanwhile, the variables derived from the LASSO regression were included in the multivariate logistic regression analysis, the variables with P < 0.05 were included in the final model and the nomogram was constructed. The discriminatory ability was assessed by plotting the receiver operating curve (ROC) and calculating the area under the curve (AUC). The Performance of the model was assessed by calibration plots and the Hosmer-Lemeshow goodness-of-fit test (HL test). In addition, clinical decision curves assess the net clinical benefit. Results The nomogram included chronic lung disease, dysphagia, mechanical ventilation, use of antibiotics, Glasgow Coma Scale (GCS), Logical Organ Dysfunction System (LODS), blood oxygen saturation (SpO2), white blood cell count (WBC) and prothrombin time (PT). The AUC of the predictive model was 0.905 (95 % CI: 0.877, 0.764) in the training cohort and 0.888 (95 % CI: 0.754, 0.838) in the validation cohort, which showed satisfactory discriminative ability. Second, the nomogram showed good calibration. Decision curve analysis showed that the predictive nomogram was clinically useful. Conclusion A prediction model for predicting pulmonary infections in elderly ICH patients was constructed. The model can help clinicians to identify high-risk patients as soon as possible and prevent the occurrence of pulmonary infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Linco采纳,获得10
1秒前
1秒前
1秒前
搜集达人应助平淡树叶采纳,获得10
2秒前
蓝天应助欢呼的苑博采纳,获得10
2秒前
2秒前
2秒前
zengdan发布了新的文献求助10
3秒前
lxy2002完成签到,获得积分10
3秒前
开心每一天完成签到,获得积分10
3秒前
科研通AI5应助Carolchen采纳,获得10
4秒前
大模型应助耿教授采纳,获得10
4秒前
777发布了新的文献求助10
4秒前
共享精神应助大饼采纳,获得10
5秒前
极品男大发布了新的文献求助10
5秒前
李苗完成签到 ,获得积分10
5秒前
wzcsyx完成签到,获得积分10
6秒前
娜娜完成签到 ,获得积分10
6秒前
泡泡发布了新的文献求助20
7秒前
彭于彦祖应助许家星采纳,获得20
7秒前
乐乐应助许家星采纳,获得10
8秒前
8秒前
8秒前
10秒前
10秒前
10秒前
all应助Mercury采纳,获得200
11秒前
myit发布了新的文献求助10
12秒前
12秒前
annan应助777采纳,获得10
13秒前
annan应助777采纳,获得10
13秒前
淡定的白筠完成签到,获得积分10
14秒前
平淡树叶发布了新的文献求助10
14秒前
华仔应助林婧采纳,获得10
15秒前
御剑乘风来完成签到,获得积分10
15秒前
不想干活应助wang采纳,获得10
16秒前
17秒前
17秒前
耿教授完成签到,获得积分10
18秒前
迪仔完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633897
求助须知:如何正确求助?哪些是违规求助? 4029610
关于积分的说明 12467882
捐赠科研通 3715936
什么是DOI,文献DOI怎么找? 2050448
邀请新用户注册赠送积分活动 1082017
科研通“疑难数据库(出版商)”最低求助积分说明 964216