Development and multiple visualization methods for the therapeutic effects prediction model of five-flavor Sophora Flavescens enteric-coated capsules in the treatment of active ulcerative colitis: A study on model development and result visualization

Lasso(编程语言) 列线图 机器学习 人工智能 校准 线性判别分析 逻辑回归 计算机科学 接收机工作特性 统计 医学 数学 内科学 万维网
作者
Zhiyang Bu,Zhi-Rui Huang,Yunru Chen,You-Zhu Su,Yuan-Yuan Jin,Yuhuan Zhang,Qiuju Wu,Xuehui Wang,Yu Wang,Jianping Liu,Xiao Wang
出处
期刊:European Journal of Integrative Medicine [Elsevier]
卷期号:63: 102297-102297 被引量:1
标识
DOI:10.1016/j.eujim.2023.102297
摘要

The aim of this study was to develop a Therapeutic Effects Prediction Model (TEPM) for the treatment of active ulcerative colitis (UC) using Five-flavor Sophora Flavescens Enteric-coated Capsules (FSEC). This study also aimed to systematically review various visualization methods for the TEPM results and present the model results of FSEC as an example. 274 patients were randomly assigned to the training and testing datasets in a 7:3 ratio. We employed Least Absolute Shrinkage and Selection Operator (LASSO) regression to select predictive factors and constructed TEPM using logistic regression to assess the probability of disease remission. We assessed model performance by the area under the curve (AUC) and calibration curve. We utilized interactive nomograms, online calculators, scoring systems, graphical scoring tables, as well as the SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) methods to present the model results. LASSO regression selected several predictors, including erythrocyte sedimentation rate, age, disease type, microscopic bleeding, pus, bridge, disease location, and pain. The AUC of the testing datasets was 0.699, and the calibration curve showed poor performance. The interactive nomogram, online calculator, and the SHAP method were suitable for datasets with predominantly continuous predictors, while scoring systems, graphical scoring tables, and the LIME method might be more appropriate for datasets with fewer continuous predictors. Physicians, researchers, and policymakers could benefit from detailed visualizations using interactive nomogram, the SHAP method, and the LIME method. Scoring systems, graphical scoring tables, and online calculator were available to the general public and non-experts. Scoring systems, graphical scoring tables, and online calculator could provide an overview of the model prediction results, while interactive nomogram, the SHAP method, and the LIME method were recommended for illustrating the complexity and rationality of the model prediction results. Our study demonstrated that TEPM could predict the potential of FSEC to induce disease remission in patients with active UC. However, the poor calibration curve might be due to the limited sample size. Larger-scale multicenter studies will be needed in the future. Selecting an appropriate visualization method for TEPM should be based on the datasets, audience, and research objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白涵山完成签到,获得积分20
1秒前
liao完成签到 ,获得积分10
1秒前
hu970发布了新的文献求助30
1秒前
科研小白发布了新的文献求助20
2秒前
SciGPT应助白小白采纳,获得10
2秒前
shuxi完成签到,获得积分10
3秒前
liuwei发布了新的文献求助10
3秒前
yxf完成签到,获得积分20
3秒前
4秒前
十一完成签到,获得积分10
4秒前
4秒前
穆萝完成签到,获得积分10
4秒前
Jenny应助Eva采纳,获得10
4秒前
bkagyin应助17808352679采纳,获得10
4秒前
俭朴夜雪发布了新的文献求助10
5秒前
5秒前
林上草应助123采纳,获得10
5秒前
科目三应助AoiNG采纳,获得10
5秒前
6秒前
orixero应助雪白涵山采纳,获得20
6秒前
123发布了新的文献求助10
7秒前
ajing完成签到,获得积分10
7秒前
537完成签到,获得积分10
7秒前
7秒前
8秒前
清醒的ZY完成签到,获得积分10
8秒前
yxf发布了新的文献求助10
9秒前
大个应助叫滚滚采纳,获得10
9秒前
9秒前
Rui发布了新的文献求助10
10秒前
10秒前
China发布了新的文献求助10
10秒前
10秒前
ryze完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762