Instance segmentation of individual tree crowns with YOLOv5: A comparison of approaches using the ForInstance benchmark LiDAR dataset

分割 计算机科学 激光雷达 点云 水准点(测量) 树(集合论) 卷积神经网络 人工智能 遥感 模式识别(心理学) 数据挖掘 机器学习 地图学 地理 数学 数学分析
作者
Adrian Straker,Stefano Puliti,Johannes Breidenbach,Christoph Kleinn,Grant D. Pearse,Rasmus Astrup,Paul Magdon
出处
期刊:ISPRS open journal of photogrammetry and remote sensing [Elsevier]
卷期号:9: 100045-100045 被引量:1
标识
DOI:10.1016/j.ophoto.2023.100045
摘要

Fine-grained information on the level of individual trees constitute key components for forest observation enabling forest management practices tackling the effects of climate change and the loss of biodiversity in forest ecosystems. Such information on individual tree crowns (ITC's) can be derived from the application of ITC segmentation approaches, which utilize remotely sensed data. However, many ITC segmentation approaches require prior knowledge about forest characteristics, which is difficult to obtain for parameterization. This can be avoided by the adoption of data-driven, automated workflows based on convolutional neural networks (CNN). To contribute to the advancements of efficient ITC segmentation approaches, we present a novel ITC segmentation approach based on the YOLOv5 CNN. We analyzed the performance of this approach on a comprehensive international unmanned aerial laser scanning (UAV-LS) dataset (ForInstance), which covers a wide range of forest types. The ForInstance dataset consists of 4192 individually annotated trees in high-density point clouds with point densities ranging from 498 to 9529 points m-2 collected across 80 sites. The original dataset was split into 70% for training and validation and 30% for model performance assessment (test data). For the best performing model, we observed a F1-score of 0.74 for ITC segmentation and a tree detection rate (DET %) of 64% in the test data. This model outperformed an ITC segmentation approach, which requires prior knowledge about forest characteristics, by 41% and 33% for F1-score and DET %, respectively. Furthermore, we tested the effects of reduced point densities (498, 50 and 10 points per m-2) on ITC segmentation performance. The YOLO model exhibited promising F1-scores of 0.69 and 0.62 even at point densities of 50 and 10 points m-2, respectively, which were between 27% and 34% better than the ITC approach that requires prior knowledge. Furthermore, the areas of ITC segments resulting from the application of the best performing YOLO model were close to the reference areas (RMSE = 3.19 m-2), suggesting that the YOLO-derived ITC segments can be used to derive information on ITC level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酶来研去完成签到,获得积分10
刚刚
铜泰妍完成签到 ,获得积分10
刚刚
淡然的花卷完成签到,获得积分10
1秒前
nekoleaf发布了新的文献求助10
2秒前
冷萃咖啡完成签到,获得积分10
2秒前
h7nho发布了新的文献求助20
2秒前
蒹葭苍苍发布了新的文献求助10
2秒前
咖啡八块八完成签到,获得积分10
3秒前
3秒前
我住隔壁我姓王完成签到,获得积分10
3秒前
布谷完成签到,获得积分10
3秒前
3秒前
3秒前
无医发布了新的文献求助10
4秒前
4秒前
Jio-PPx发布了新的文献求助10
5秒前
Sir.夏季风完成签到,获得积分10
5秒前
王开晙完成签到,获得积分10
5秒前
小狐狸完成签到,获得积分10
5秒前
忧虑的鹭洋完成签到,获得积分10
6秒前
6秒前
wuta完成签到,获得积分10
6秒前
JamesPei应助YW采纳,获得10
6秒前
Shauna完成签到,获得积分10
6秒前
LYSnow7完成签到 ,获得积分10
7秒前
7秒前
岁月浪翻了完成签到,获得积分10
7秒前
广州南完成签到 ,获得积分10
7秒前
bao完成签到,获得积分10
7秒前
万能图书馆应助aktuell采纳,获得10
7秒前
生动茹妖完成签到,获得积分10
7秒前
嘻嘻印完成签到,获得积分10
8秒前
向阳完成签到,获得积分10
8秒前
爱吃冬瓜完成签到,获得积分10
8秒前
Ygy发布了新的文献求助10
8秒前
MchemG应助xzy998采纳,获得20
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助Shauna采纳,获得10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044