Instance segmentation of individual tree crowns with YOLOv5: A comparison of approaches using the ForInstance benchmark LiDAR dataset

分割 计算机科学 激光雷达 点云 水准点(测量) 树(集合论) 卷积神经网络 人工智能 遥感 模式识别(心理学) 数据挖掘 机器学习 地图学 地理 数学 数学分析
作者
Adrian Straker,Stefano Puliti,Johannes Breidenbach,Christoph Kleinn,Grant D. Pearse,Rasmus Astrup,Paul Magdon
出处
期刊:ISPRS open journal of photogrammetry and remote sensing [Elsevier]
卷期号:9: 100045-100045 被引量:1
标识
DOI:10.1016/j.ophoto.2023.100045
摘要

Fine-grained information on the level of individual trees constitute key components for forest observation enabling forest management practices tackling the effects of climate change and the loss of biodiversity in forest ecosystems. Such information on individual tree crowns (ITC's) can be derived from the application of ITC segmentation approaches, which utilize remotely sensed data. However, many ITC segmentation approaches require prior knowledge about forest characteristics, which is difficult to obtain for parameterization. This can be avoided by the adoption of data-driven, automated workflows based on convolutional neural networks (CNN). To contribute to the advancements of efficient ITC segmentation approaches, we present a novel ITC segmentation approach based on the YOLOv5 CNN. We analyzed the performance of this approach on a comprehensive international unmanned aerial laser scanning (UAV-LS) dataset (ForInstance), which covers a wide range of forest types. The ForInstance dataset consists of 4192 individually annotated trees in high-density point clouds with point densities ranging from 498 to 9529 points m-2 collected across 80 sites. The original dataset was split into 70% for training and validation and 30% for model performance assessment (test data). For the best performing model, we observed a F1-score of 0.74 for ITC segmentation and a tree detection rate (DET %) of 64% in the test data. This model outperformed an ITC segmentation approach, which requires prior knowledge about forest characteristics, by 41% and 33% for F1-score and DET %, respectively. Furthermore, we tested the effects of reduced point densities (498, 50 and 10 points per m-2) on ITC segmentation performance. The YOLO model exhibited promising F1-scores of 0.69 and 0.62 even at point densities of 50 and 10 points m-2, respectively, which were between 27% and 34% better than the ITC approach that requires prior knowledge. Furthermore, the areas of ITC segments resulting from the application of the best performing YOLO model were close to the reference areas (RMSE = 3.19 m-2), suggesting that the YOLO-derived ITC segments can be used to derive information on ITC level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣乌冬面完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
扶苏在上发布了新的文献求助30
3秒前
master应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
4秒前
顺心凡灵完成签到,获得积分10
5秒前
甜甜玫瑰应助Maosha采纳,获得10
6秒前
慕青应助风趣乌冬面采纳,获得10
6秒前
CodeCraft应助复杂雁桃采纳,获得10
7秒前
8秒前
深情安青应助包容的千兰采纳,获得10
8秒前
zilong发布了新的文献求助10
9秒前
9秒前
Hello应助天真的棒棒糖采纳,获得10
9秒前
dd完成签到,获得积分20
9秒前
suzy完成签到,获得积分10
11秒前
11秒前
是个憨憨完成签到,获得积分10
11秒前
贰鸟应助高丽娜采纳,获得20
13秒前
ardejiang发布了新的文献求助10
13秒前
15秒前
科研通AI2S应助KASTTTTTT采纳,获得10
15秒前
15秒前
15秒前
Luhan发布了新的文献求助20
16秒前
科研通AI2S应助大米采纳,获得10
16秒前
研友_VZG7GZ应助zilong采纳,获得10
17秒前
苏打汽水应助下一手采纳,获得10
18秒前
科目三应助犹豫的忆梅采纳,获得10
20秒前
鲤鱼谷秋发布了新的文献求助10
20秒前
21秒前
23秒前
似飞鸿踏雪泥完成签到 ,获得积分10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919