Instance segmentation of individual tree crowns with YOLOv5: A comparison of approaches using the ForInstance benchmark LiDAR dataset

分割 计算机科学 激光雷达 点云 水准点(测量) 树(集合论) 卷积神经网络 人工智能 遥感 模式识别(心理学) 数据挖掘 机器学习 地图学 地理 数学 数学分析
作者
Adrian Straker,Stefano Puliti,Johannes Breidenbach,Christoph Kleinn,Grant D. Pearse,Rasmus Astrup,Paul Magdon
出处
期刊:ISPRS open journal of photogrammetry and remote sensing [Elsevier]
卷期号:9: 100045-100045 被引量:1
标识
DOI:10.1016/j.ophoto.2023.100045
摘要

Fine-grained information on the level of individual trees constitute key components for forest observation enabling forest management practices tackling the effects of climate change and the loss of biodiversity in forest ecosystems. Such information on individual tree crowns (ITC's) can be derived from the application of ITC segmentation approaches, which utilize remotely sensed data. However, many ITC segmentation approaches require prior knowledge about forest characteristics, which is difficult to obtain for parameterization. This can be avoided by the adoption of data-driven, automated workflows based on convolutional neural networks (CNN). To contribute to the advancements of efficient ITC segmentation approaches, we present a novel ITC segmentation approach based on the YOLOv5 CNN. We analyzed the performance of this approach on a comprehensive international unmanned aerial laser scanning (UAV-LS) dataset (ForInstance), which covers a wide range of forest types. The ForInstance dataset consists of 4192 individually annotated trees in high-density point clouds with point densities ranging from 498 to 9529 points m-2 collected across 80 sites. The original dataset was split into 70% for training and validation and 30% for model performance assessment (test data). For the best performing model, we observed a F1-score of 0.74 for ITC segmentation and a tree detection rate (DET %) of 64% in the test data. This model outperformed an ITC segmentation approach, which requires prior knowledge about forest characteristics, by 41% and 33% for F1-score and DET %, respectively. Furthermore, we tested the effects of reduced point densities (498, 50 and 10 points per m-2) on ITC segmentation performance. The YOLO model exhibited promising F1-scores of 0.69 and 0.62 even at point densities of 50 and 10 points m-2, respectively, which were between 27% and 34% better than the ITC approach that requires prior knowledge. Furthermore, the areas of ITC segments resulting from the application of the best performing YOLO model were close to the reference areas (RMSE = 3.19 m-2), suggesting that the YOLO-derived ITC segments can be used to derive information on ITC level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Pauline完成签到,获得积分10
3秒前
jackie发布了新的文献求助10
3秒前
笨笨摇伽发布了新的文献求助10
5秒前
科目三应助皓月繁星采纳,获得10
5秒前
tomato完成签到,获得积分20
7秒前
CodeCraft应助缘一采纳,获得10
8秒前
小二郎应助刘铭晨采纳,获得10
8秒前
8秒前
大个应助风雨1210采纳,获得10
8秒前
一壶清酒完成签到,获得积分10
8秒前
9秒前
tomato发布了新的文献求助30
10秒前
陈莹发布了新的文献求助10
11秒前
12秒前
12秒前
小狗同志006完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
皓月繁星完成签到,获得积分10
13秒前
ZeJ发布了新的文献求助10
14秒前
14秒前
15秒前
usrcu完成签到 ,获得积分10
15秒前
122x应助赖道之采纳,获得10
16秒前
厉不厉害你坤哥完成签到,获得积分10
16秒前
wuzhizhiya发布了新的文献求助10
17秒前
17秒前
17秒前
皓月繁星发布了新的文献求助10
18秒前
18秒前
迷路白桃发布了新的文献求助20
18秒前
ZeJ完成签到,获得积分10
19秒前
景别发布了新的文献求助10
19秒前
19秒前
NexusExplorer应助陈莹采纳,获得10
20秒前
GXY发布了新的文献求助10
20秒前
嘟嘟发布了新的文献求助10
21秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808