A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics

化学计量学 主成分分析 线性判别分析 偏最小二乘回归 植物油 傅里叶变换红外光谱 化学 光谱学 模式识别(心理学) 近红外光谱 分析化学(期刊) 红外光谱学 荧光光谱法 数学 人工智能 生物系统 食品科学 色谱法 荧光 计算机科学 统计 生物 有机化学 物理 量子力学 神经科学
作者
Libo Yuan,Xiangru Meng,Kehui Xin,Ying Ju,Yan Zhang,Chunling Yin,Leqian Hu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:288: 122120-122120 被引量:12
标识
DOI:10.1016/j.saa.2022.122120
摘要

Driven by economic benefits like any other foods, vegetable oil has long been plagued by mislabeling and adulteration. Many studies have addressed the field of classification and identification of vegetable oils by various analysis techniques, especially spectral analysis. A comparative study was performed using Fourier transform infrared spectroscopy (FTIR), visible near-infrared spectroscopy (Vis-NIR) and excitation-emission matrix fluorescence spectroscopy (EEMs) combined with chemometrics to distinguish different types of edible vegetable oils. FTIR, Vis-NIR and EEMs datasets of 147 samples of five vegetable oils from different brands were analyzed. Two types of pattern recognition methods, principal component analysis (PCA)/multi-way principal component analysis (M-PCA) and partial least squares discriminant analysis (PLS-DA)/multilinear partial least squares discriminant analysis (N-PLS-DA), were used to resolve these data and distinguish vegetable oil types, respectively. PCA/M-PCA analysis exhibited that three spectral data of five vegetable oils showed a clustering trend. The total correct recognition rate of the training set and prediction set of FTIR spectra of vegetable oil based on PLS-DA method are 100%. The total recognition rate of Vis-NIR based on PLS-DA are 100% and 97.96%. However, the total correct recognition rate of training set and prediction set of EEMs data based on N-PLS-DA method is 69.39% and 75.51%, respectively. The comparative study showed that FTIR and Vis-NIR combined with chemometrics were more suitable for vegetable oil species identification than EEMs technique. The reason may be concluded that almost all chemical components in vegetable oil can produce FTIR and NIR absorption, while only a small amount of fluorophores can produce fluorescence. That is, FTIR and NIR can provide more spectral information than EEMs. Analysis of EEMs data using self-weighted alternating trilinear decomposition (SWATLD) also showed that fluorophores were a few and irregularly distributed in vegetable oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青柠发布了新的文献求助10
刚刚
无花果应助666采纳,获得10
刚刚
1秒前
雨水发布了新的文献求助10
1秒前
高大绝义发布了新的文献求助10
2秒前
打打应助会武功的阿吉采纳,获得10
2秒前
姜冬菇完成签到,获得积分10
3秒前
咕咕完成签到,获得积分10
3秒前
3秒前
脑洞疼应助mianmianyu采纳,获得10
3秒前
彭于晏应助Z先生采纳,获得10
4秒前
一程发布了新的文献求助10
4秒前
4秒前
闪闪谷槐发布了新的文献求助10
4秒前
守墓人完成签到 ,获得积分10
5秒前
核桃应助独特的平安采纳,获得10
5秒前
CodeCraft应助独特的平安采纳,获得10
5秒前
大个应助cr7采纳,获得10
6秒前
Hedy发布了新的文献求助10
7秒前
轻松盼雁完成签到,获得积分10
8秒前
shea发布了新的文献求助10
8秒前
9秒前
AYQ发布了新的文献求助10
12秒前
天天快乐应助夏冉采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
杨西西发布了新的文献求助10
16秒前
榴下晨光发布了新的文献求助10
17秒前
萝卜花1968发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
桉韵沁发布了新的文献求助10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350