锡
位阻效应
化学工程
电化学
阳极
材料科学
动力学
碳纤维
电池(电)
电化学动力学
氧化锡
纳米技术
兴奋剂
化学
电极
复合数
有机化学
复合材料
光电子学
工程类
物理化学
物理
功率(物理)
冶金
量子力学
作者
Huihui Song,Kun Tian,Zhengyuan Fang,Chaohui Guan,Huiying Jiang,Minghua Lu,Minshu Zhang,Shuxin Zhuang,Hao Wu,Dong Wei,Xiaodan Li
标识
DOI:10.1016/j.jcis.2022.11.035
摘要
Tin-based anode materials with high theoretical specific capacity are subject to huge volume expansion and poor reaction reversibility, leading to degradation of battery performance. Herein, the steric-hindrance effect and self-sacrificing template behavior of polydopamine were firstly developed to induce the formation of hollow nanospheres assembled by ultrafine SnO2 quantum dots (SnO2-QDs) and nitrogen-doped carbon (NC), containing residual polydopamine (PDA) cores. The PDA@SnO2-QDs/NC hollow nanospheres could effectively accommodate the volume expansion and maintain structural stability. More importantly, the PDA core could capture oxygen free radicals produced by the charge/discharge process and be involved in the evolution of the SEI layer, achieving enhanced electrochemical reaction kinetics. The optimized PDA@SnO2-QDs/NC anode shows a specific capacity of 898 mAh g−1 after 300 cycles at 0.3 A g−1, and scarcely capacity attenuation after 1500 cycles at 1 A g−1. The long-cyclic life is up to 3000 cycles at 3 A g−1. Even after 200 cycles, the anode in the PDA@SnO2-QDs/NC||LFP full battery gives a reversible capacity of 489 mAh g−1 at 0.3 A g−1, with a capacity retention of 77 %. This work casts new light on tin-based anode materials and interface optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI