An Investigation of the Reaction Mechanism of the Direct Electrochemical Propylene Oxidation to Propylene Oxide with Electrochemical Mass Spectroscopy

环氧丙烷 脱氢 碳酸丙烯酯 催化作用 电化学 氧化物 聚乙烯醇 材料科学 化学 无机化学 有机化学 聚合物 电极 共聚物 物理化学 环氧乙烷
作者
Tugce Yilmaz,Ib Chorkendorff,Brian Seger
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (54): 2047-2047
标识
DOI:10.1149/ma2022-02542047mtgabs
摘要

Propylene oxide is a high-value precursor in the chemical industry with a large variety of applications and a market growing 4-5% annually. Currently, more than 10% of the propylene is used for the production of propylene oxide. The traditional methods for producing propylene oxide are chlorohydrin and hydroperoxide methods. These methods are costly, environmentally pollutant, and inefficient with a high proportion of by-products[1]. Renewable energy sourced direct electrocatalytic propylene oxidation to propylene oxide stands out as a way to replace the traditional methods and overcome the mentioned disadvantages. However, there has been a very limited number of studies about this topic in the last few decades starting from the 1960s. The experimental systems in these studies were significantly different from each other in terms of electrochemical cells and test methods, temperature, reactants, catalysts, etc[2–7]. Additionally, due to the limitation of available characterization and product detection methods the conclusions could not be well established. The majority of the performed studies suffered from difficulties in detecting and accurately quantifying propylene oxide due to its high volatility and hydrolysis to propylene glycol. Likewise, recent results from Winiwarter et al. revealed that there is propylene glycol formation on Pd catalysts at high potentials above 1.0 V vs. RHE in 0.1 M HClO 4 and the selectivity towards dehydrogenation products decreases however, due to the lack of sensitive and fast product analysis method they could not quantify the propylene oxide even though they could detect it [8]. Moreover, there is only a limited number of studies investigating the reaction mechanism for electrochemical propylene oxidation towards propylene oxide. The theoretical study done by Li et al. proposed propylene oxide formation on PdO 2 (110) at 1.23 V vs RHE where the oxygen vacancies formed on the catalyst therefore they suggest that propylene reacts with lattice oxygen. Additionally, they suggest the competing reaction pathway to epoxidation as dehydrogenation of –CH 3 results in acrolein, CO, and CO 2 [9]. Contrarily, Otsuka suggested a tentative Langmuir-Hinselwood mechanism for electrochemical propylene oxidation to propylene oxide[10]. In conclusion, the reaction mechanism for electrochemical propylene epoxidation on Pd is still not well understood. Therefore, we focused on discovering the reaction mechanism since it is crucial to design a rational catalyst. In this work, we are investigating in-situ electrocatalytic propylene oxidation to propylene oxide on different catalysts, starting from Pd. The unique electrochemical mass spectroscopy device that we are using enables in-situ detection and quantification of propylene oxide and also competing dehydrogenation pathway products acrolein and CO 2 proposed by the theoretical study of Li et al.[9]. In addition to that, this device enables us to detect these products with great time resolution, so we are able to see the differences in product distribution very quickly when we change the applied potential. With these measurements, we offer an insight into the reaction pathway towards the electrochemical formation of propylene oxide and extend our investigations to other catalysts besides Pd. We believe that this study will help to understand the reaction mechanism for different catalysts leading to a great impact on rational catalyst design for electrochemical propylene oxidation to propylene oxide. [1] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res., 45, (2006), doi:10.1021/ie0513090. [2] J.O.M. Bockris, H. Wroblowa, E. Gileadi, B.J. Piersma, Trans. Faraday Soc., 61, (1965), doi:10.1039/tf9656102531. [3] T.C. Chou, J.C. Chang, Chem. Eng. Sci., 35, (1980). [4] K. Scott, C. Odouza, W. Hui, Chem. Eng. Sci., 47, (1992),doi:10.1016/0009-2509(92)87158-M. [5] V.M. Schmidt, E. Pastor, J. Electroanal. Chem., 401, (1996), doi:10.1016/0022-0728(95)04299-7. [6] H. Wise, L.L. Holbrook, J. Catal., 298, (1975). [7] G.R. Stafford, Electrochim. Acta., 32, (1987),doi:10.1016/0013-4686(87)80024-5. [8] A. Winiwarter, L. Silvioli, S.B. Scott, K. Enemark-Rasmussen, M. Sariç, D.B. Trimarco, P.C.K. Vesborg, P.G. Moses, I.E.L. Stephens, B. Seger, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci., 12, (2019), doi:10.1039/c8ee03426e. [9] H. Li, C.S. Abraham, M. Anand, A. Cao, J.K. Nørskov, J. Phys. Chem. Lett., 13, (2022), doi:10.1021/acs.jpclett.2c00257. [10] K. Otsuka, T. Ushiyama, I. Yamanaka, K. Ebitani, J. Catal., 157, (1995),doi:10.1006/jcat.1995.1310.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪鹏飞发布了新的文献求助10
1秒前
farr完成签到,获得积分10
1秒前
alexwang发布了新的文献求助30
2秒前
Patience完成签到,获得积分10
2秒前
赘婿应助呃呃呃呃采纳,获得10
5秒前
6秒前
orixero应助行走De太阳花采纳,获得30
8秒前
当代完成签到 ,获得积分10
8秒前
11秒前
纪鹏飞完成签到,获得积分10
11秒前
aa发布了新的文献求助10
12秒前
李健的小迷弟应助hui采纳,获得10
12秒前
林夕完成签到 ,获得积分20
16秒前
16秒前
komorebi发布了新的文献求助10
17秒前
pizwijrit完成签到,获得积分10
17秒前
蜗牛完成签到 ,获得积分10
17秒前
aa完成签到,获得积分10
18秒前
18秒前
jirry完成签到,获得积分10
18秒前
zhw完成签到,获得积分10
19秒前
CipherSage应助甜蜜安筠采纳,获得10
19秒前
FX1688完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
一条蛆完成签到 ,获得积分10
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
baileys发布了新的文献求助10
22秒前
23秒前
XIAOSHUAI完成签到,获得积分10
24秒前
24秒前
旦皋发布了新的文献求助10
25秒前
Cris发布了新的文献求助10
25秒前
小二郎应助Yuki采纳,获得10
25秒前
勤恳数据线完成签到,获得积分10
25秒前
就离谱完成签到,获得积分10
26秒前
27秒前
胡不言发布了新的文献求助10
28秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736632
求助须知:如何正确求助?哪些是违规求助? 5367001
关于积分的说明 15333469
捐赠科研通 4880391
什么是DOI,文献DOI怎么找? 2622848
邀请新用户注册赠送积分活动 1571730
关于科研通互助平台的介绍 1528573