An Investigation of the Reaction Mechanism of the Direct Electrochemical Propylene Oxidation to Propylene Oxide with Electrochemical Mass Spectroscopy

环氧丙烷 脱氢 碳酸丙烯酯 催化作用 电化学 氧化物 聚乙烯醇 材料科学 化学 无机化学 有机化学 聚合物 电极 环氧乙烷 物理化学 共聚物
作者
Tugce Yilmaz,Ib Chorkendorff,Brian Seger
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (54): 2047-2047
标识
DOI:10.1149/ma2022-02542047mtgabs
摘要

Propylene oxide is a high-value precursor in the chemical industry with a large variety of applications and a market growing 4-5% annually. Currently, more than 10% of the propylene is used for the production of propylene oxide. The traditional methods for producing propylene oxide are chlorohydrin and hydroperoxide methods. These methods are costly, environmentally pollutant, and inefficient with a high proportion of by-products[1]. Renewable energy sourced direct electrocatalytic propylene oxidation to propylene oxide stands out as a way to replace the traditional methods and overcome the mentioned disadvantages. However, there has been a very limited number of studies about this topic in the last few decades starting from the 1960s. The experimental systems in these studies were significantly different from each other in terms of electrochemical cells and test methods, temperature, reactants, catalysts, etc[2–7]. Additionally, due to the limitation of available characterization and product detection methods the conclusions could not be well established. The majority of the performed studies suffered from difficulties in detecting and accurately quantifying propylene oxide due to its high volatility and hydrolysis to propylene glycol. Likewise, recent results from Winiwarter et al. revealed that there is propylene glycol formation on Pd catalysts at high potentials above 1.0 V vs. RHE in 0.1 M HClO 4 and the selectivity towards dehydrogenation products decreases however, due to the lack of sensitive and fast product analysis method they could not quantify the propylene oxide even though they could detect it [8]. Moreover, there is only a limited number of studies investigating the reaction mechanism for electrochemical propylene oxidation towards propylene oxide. The theoretical study done by Li et al. proposed propylene oxide formation on PdO 2 (110) at 1.23 V vs RHE where the oxygen vacancies formed on the catalyst therefore they suggest that propylene reacts with lattice oxygen. Additionally, they suggest the competing reaction pathway to epoxidation as dehydrogenation of –CH 3 results in acrolein, CO, and CO 2 [9]. Contrarily, Otsuka suggested a tentative Langmuir-Hinselwood mechanism for electrochemical propylene oxidation to propylene oxide[10]. In conclusion, the reaction mechanism for electrochemical propylene epoxidation on Pd is still not well understood. Therefore, we focused on discovering the reaction mechanism since it is crucial to design a rational catalyst. In this work, we are investigating in-situ electrocatalytic propylene oxidation to propylene oxide on different catalysts, starting from Pd. The unique electrochemical mass spectroscopy device that we are using enables in-situ detection and quantification of propylene oxide and also competing dehydrogenation pathway products acrolein and CO 2 proposed by the theoretical study of Li et al.[9]. In addition to that, this device enables us to detect these products with great time resolution, so we are able to see the differences in product distribution very quickly when we change the applied potential. With these measurements, we offer an insight into the reaction pathway towards the electrochemical formation of propylene oxide and extend our investigations to other catalysts besides Pd. We believe that this study will help to understand the reaction mechanism for different catalysts leading to a great impact on rational catalyst design for electrochemical propylene oxidation to propylene oxide. [1] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res., 45, (2006), doi:10.1021/ie0513090. [2] J.O.M. Bockris, H. Wroblowa, E. Gileadi, B.J. Piersma, Trans. Faraday Soc., 61, (1965), doi:10.1039/tf9656102531. [3] T.C. Chou, J.C. Chang, Chem. Eng. Sci., 35, (1980). [4] K. Scott, C. Odouza, W. Hui, Chem. Eng. Sci., 47, (1992),doi:10.1016/0009-2509(92)87158-M. [5] V.M. Schmidt, E. Pastor, J. Electroanal. Chem., 401, (1996), doi:10.1016/0022-0728(95)04299-7. [6] H. Wise, L.L. Holbrook, J. Catal., 298, (1975). [7] G.R. Stafford, Electrochim. Acta., 32, (1987),doi:10.1016/0013-4686(87)80024-5. [8] A. Winiwarter, L. Silvioli, S.B. Scott, K. Enemark-Rasmussen, M. Sariç, D.B. Trimarco, P.C.K. Vesborg, P.G. Moses, I.E.L. Stephens, B. Seger, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci., 12, (2019), doi:10.1039/c8ee03426e. [9] H. Li, C.S. Abraham, M. Anand, A. Cao, J.K. Nørskov, J. Phys. Chem. Lett., 13, (2022), doi:10.1021/acs.jpclett.2c00257. [10] K. Otsuka, T. Ushiyama, I. Yamanaka, K. Ebitani, J. Catal., 157, (1995),doi:10.1006/jcat.1995.1310.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
汉堡包应助yt采纳,获得10
3秒前
4秒前
Emily完成签到,获得积分10
6秒前
scuter发布了新的文献求助10
6秒前
7秒前
8秒前
Wtf发布了新的文献求助30
8秒前
崔小熊发布了新的文献求助10
9秒前
司耶发布了新的文献求助10
9秒前
10秒前
12秒前
喻亦寒完成签到,获得积分10
12秒前
zhentg完成签到,获得积分10
12秒前
lost发布了新的文献求助10
13秒前
Anonymous完成签到,获得积分10
13秒前
13秒前
星辰大海应助sci_zt采纳,获得30
14秒前
vayne完成签到,获得积分20
15秒前
oysp完成签到,获得积分10
15秒前
17秒前
罗山柳发布了新的文献求助10
17秒前
17秒前
郑qqqq发布了新的文献求助10
18秒前
20秒前
bluemary完成签到,获得积分10
20秒前
眼泪成诗完成签到 ,获得积分10
21秒前
21秒前
TINATINA完成签到,获得积分10
21秒前
调研昵称发布了新的文献求助10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
科研小民工应助科研通管家采纳,获得200
22秒前
田様应助科研通管家采纳,获得30
22秒前
汉堡包应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
23秒前
梦凡完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546392
求助须知:如何正确求助?哪些是违规求助? 3123535
关于积分的说明 9355677
捐赠科研通 2822080
什么是DOI,文献DOI怎么找? 1551259
邀请新用户注册赠送积分活动 723282
科研通“疑难数据库(出版商)”最低求助积分说明 713690