An Investigation of the Reaction Mechanism of the Direct Electrochemical Propylene Oxidation to Propylene Oxide with Electrochemical Mass Spectroscopy

环氧丙烷 脱氢 碳酸丙烯酯 催化作用 电化学 氧化物 聚乙烯醇 材料科学 化学 无机化学 有机化学 聚合物 电极 环氧乙烷 物理化学 共聚物
作者
Tugce Yilmaz,Ib Chorkendorff,Brian Seger
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (54): 2047-2047
标识
DOI:10.1149/ma2022-02542047mtgabs
摘要

Propylene oxide is a high-value precursor in the chemical industry with a large variety of applications and a market growing 4-5% annually. Currently, more than 10% of the propylene is used for the production of propylene oxide. The traditional methods for producing propylene oxide are chlorohydrin and hydroperoxide methods. These methods are costly, environmentally pollutant, and inefficient with a high proportion of by-products[1]. Renewable energy sourced direct electrocatalytic propylene oxidation to propylene oxide stands out as a way to replace the traditional methods and overcome the mentioned disadvantages. However, there has been a very limited number of studies about this topic in the last few decades starting from the 1960s. The experimental systems in these studies were significantly different from each other in terms of electrochemical cells and test methods, temperature, reactants, catalysts, etc[2–7]. Additionally, due to the limitation of available characterization and product detection methods the conclusions could not be well established. The majority of the performed studies suffered from difficulties in detecting and accurately quantifying propylene oxide due to its high volatility and hydrolysis to propylene glycol. Likewise, recent results from Winiwarter et al. revealed that there is propylene glycol formation on Pd catalysts at high potentials above 1.0 V vs. RHE in 0.1 M HClO 4 and the selectivity towards dehydrogenation products decreases however, due to the lack of sensitive and fast product analysis method they could not quantify the propylene oxide even though they could detect it [8]. Moreover, there is only a limited number of studies investigating the reaction mechanism for electrochemical propylene oxidation towards propylene oxide. The theoretical study done by Li et al. proposed propylene oxide formation on PdO 2 (110) at 1.23 V vs RHE where the oxygen vacancies formed on the catalyst therefore they suggest that propylene reacts with lattice oxygen. Additionally, they suggest the competing reaction pathway to epoxidation as dehydrogenation of –CH 3 results in acrolein, CO, and CO 2 [9]. Contrarily, Otsuka suggested a tentative Langmuir-Hinselwood mechanism for electrochemical propylene oxidation to propylene oxide[10]. In conclusion, the reaction mechanism for electrochemical propylene epoxidation on Pd is still not well understood. Therefore, we focused on discovering the reaction mechanism since it is crucial to design a rational catalyst. In this work, we are investigating in-situ electrocatalytic propylene oxidation to propylene oxide on different catalysts, starting from Pd. The unique electrochemical mass spectroscopy device that we are using enables in-situ detection and quantification of propylene oxide and also competing dehydrogenation pathway products acrolein and CO 2 proposed by the theoretical study of Li et al.[9]. In addition to that, this device enables us to detect these products with great time resolution, so we are able to see the differences in product distribution very quickly when we change the applied potential. With these measurements, we offer an insight into the reaction pathway towards the electrochemical formation of propylene oxide and extend our investigations to other catalysts besides Pd. We believe that this study will help to understand the reaction mechanism for different catalysts leading to a great impact on rational catalyst design for electrochemical propylene oxidation to propylene oxide. [1] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res., 45, (2006), doi:10.1021/ie0513090. [2] J.O.M. Bockris, H. Wroblowa, E. Gileadi, B.J. Piersma, Trans. Faraday Soc., 61, (1965), doi:10.1039/tf9656102531. [3] T.C. Chou, J.C. Chang, Chem. Eng. Sci., 35, (1980). [4] K. Scott, C. Odouza, W. Hui, Chem. Eng. Sci., 47, (1992),doi:10.1016/0009-2509(92)87158-M. [5] V.M. Schmidt, E. Pastor, J. Electroanal. Chem., 401, (1996), doi:10.1016/0022-0728(95)04299-7. [6] H. Wise, L.L. Holbrook, J. Catal., 298, (1975). [7] G.R. Stafford, Electrochim. Acta., 32, (1987),doi:10.1016/0013-4686(87)80024-5. [8] A. Winiwarter, L. Silvioli, S.B. Scott, K. Enemark-Rasmussen, M. Sariç, D.B. Trimarco, P.C.K. Vesborg, P.G. Moses, I.E.L. Stephens, B. Seger, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci., 12, (2019), doi:10.1039/c8ee03426e. [9] H. Li, C.S. Abraham, M. Anand, A. Cao, J.K. Nørskov, J. Phys. Chem. Lett., 13, (2022), doi:10.1021/acs.jpclett.2c00257. [10] K. Otsuka, T. Ushiyama, I. Yamanaka, K. Ebitani, J. Catal., 157, (1995),doi:10.1006/jcat.1995.1310.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨德凯发布了新的文献求助10
刚刚
喜悦发卡发布了新的文献求助10
1秒前
1秒前
2秒前
Owen应助雪白元槐采纳,获得10
2秒前
2秒前
小玉发布了新的文献求助10
3秒前
晶晶发布了新的文献求助10
4秒前
Jasper应助liuxiaomeng采纳,获得10
4秒前
4秒前
4秒前
流体离子发电机完成签到,获得积分10
5秒前
CQMZY_2025完成签到,获得积分10
5秒前
aaa北大街发布了新的文献求助10
5秒前
成就迎梅完成签到,获得积分10
5秒前
ly613发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
陆仓颉完成签到,获得积分10
6秒前
共享精神应助yyan采纳,获得10
6秒前
可爱的函函应助myc采纳,获得10
7秒前
眼睛大书桃完成签到,获得积分10
7秒前
ppp发布了新的文献求助10
8秒前
8秒前
我是老大应助喜悦发卡采纳,获得10
8秒前
在水一方应助怡然之玉采纳,获得10
8秒前
9秒前
zhouzhou完成签到,获得积分10
9秒前
汉堡包应助夏cai采纳,获得10
11秒前
杨德凯完成签到,获得积分10
11秒前
11秒前
健壮鸡翅完成签到,获得积分10
11秒前
11秒前
科研通AI6应助无限灵竹采纳,获得10
12秒前
12秒前
清爽的青丝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
斯文败类应助懵懂的采梦采纳,获得30
14秒前
14秒前
赘婿应助LNE采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986