A matheuristic for flexible job shop scheduling problem with lot-streaming and machine reconfigurations

拖延 作业车间调度 数学优化 计算机科学 调度(生产过程) 整数规划 尺寸 水准点(测量) 可变邻域搜索 操作系统 元启发式 数学 算法 地铁列车时刻表 艺术 视觉艺术 地理 大地测量学
作者
Jiaxin Fan,Chunjiang Zhang,Weiming Shen,Liang Gao
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:61 (19): 6565-6588 被引量:23
标识
DOI:10.1080/00207543.2022.2135629
摘要

Multi-variety and small-batch production mode enables manufacturing industries to expeditiously satisfy customers' personalised demands, where a large amount of identical jobs can be split into several sublots, and be processed by reconfigurable machines with multiple machining technics. However, such highly flexible manufacturing environments bring some intractable problems to the production scheduling. Mathematical programming and meta-heuristic methods become less efficient when a scheduling problem contains both discrete and continuous optimisation attributes. Therefore, matheuristic, which combines advantages of the two methodologies, is regarded as a promising solution. This paper investigates a flexible job shop scheduling problem with lot-streaming and machine reconfigurations (FJSP-LSMR) for the total weighted tardiness minimisation. First, a monolithic mixed integer linear programming (MILP) model is established for the FJSP-LSMR. Afterwards, a matheuristic method with a variable neighbourhood search component (MH-VNS) is developed to address the problem. The MH-VNS adopts the classical genetic algorithm (GA) as the framework, and introduces two MILP-based lot-streaming optimisation strategies, LSO1 and LSO2, to improve lot-sizing plans with varying degrees. Four groups of instances are extended from the well-known Fdata benchmark to evaluate the performance of proposed MILP model, LSO1 and LSO2 components, and MH-VNS. Numerical experimental results suggest that LSO1 and LSO2 are efficient in different scenarios, and the proposed MH-VNS can well balance the solution quality and computational costs for reasonably integrating the GA- and MILP-based local search strategies. In addition, a complicated FJSP-LSMR case is abstracted from a real-world shop floor for processing large-sized structural parts to further validate the MH-VNS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCC完成签到,获得积分10
刚刚
Sunny完成签到,获得积分10
刚刚
德鲁大叔完成签到,获得积分10
刚刚
小蘑菇应助诺之采纳,获得10
1秒前
一只你个灰完成签到,获得积分10
1秒前
1秒前
火山羊完成签到,获得积分10
3秒前
木木完成签到,获得积分10
3秒前
脑洞疼应助thousandlong采纳,获得10
4秒前
WenzongLai完成签到,获得积分10
4秒前
4秒前
CipherSage应助fsky采纳,获得30
4秒前
酷波er应助紫紫采纳,获得10
4秒前
Owen应助Engen采纳,获得10
5秒前
归尘应助熊熊熊采纳,获得10
5秒前
5秒前
大大怪发布了新的文献求助10
6秒前
黄家琪关注了科研通微信公众号
7秒前
核电站完成签到,获得积分10
7秒前
7秒前
xv完成签到,获得积分10
7秒前
usee完成签到,获得积分10
7秒前
TZMY完成签到,获得积分10
7秒前
8秒前
丘比特应助MM采纳,获得10
8秒前
田様应助JoshuaChen采纳,获得10
9秒前
Ttttt完成签到,获得积分10
9秒前
瘦瘦依白应助爱吃脑袋瓜采纳,获得10
9秒前
哈哈是你发布了新的文献求助10
9秒前
震震发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
四川南丁格尔完成签到 ,获得积分10
12秒前
Owen应助秋纳瑞采纳,获得10
12秒前
Pan完成签到,获得积分10
12秒前
Lucas应助Jenaloe采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582