Rapid Detection of Moisture Content in the Processing of Longjing Tea by Micro-Near-Infrared Spectroscopy and a Portable Colorimeter Based on a Data Fusion Strategy

偏最小二乘回归 近红外光谱 传感器融合 色度计 主成分分析 融合 相关系数 含水量 计算机科学 人工智能 模式识别(心理学) 机器学习 工程类 语言学 哲学 物理 岩土工程 量子力学
作者
Xuyan Zong,Xufeng Sheng,Li Li,Jiezhong Zan,Yongwen Jiang,Hanting Zou,Shuai Shen,Haibo Yuan
出处
期刊:Horticulturae [Multidisciplinary Digital Publishing Institute]
卷期号:8 (11): 1007-1007 被引量:3
标识
DOI:10.3390/horticulturae8111007
摘要

Moisture content (MC) is an important indicator to monitor the quality of Longjing tea during processing; therefore, it becomes more critical to develop digital moisture content detection methods for processing. In this study, based on a micro-near infrared (NIR) spectrometer and portable colorimeter, we used Longjing tea under the full processing process as the research object, and used competitive adaptive reweighted sampling (CARS) and a principal component analysis (PCA) to extract characteristic bands of spectral data as well as the principal component reduction processing of the color difference and glossiness data, respectively, combined with sensor data fusion technology to establish a quantitative prediction model of the partial least squares (PLS) for the moisture content of Longjing tea. The PLS quantitative moisture content prediction model, based on middle-level data fusion, obtained the best prediction accuracy and model robustness, with the correlation coefficient of the prediction set (Rp) and the root mean square error of prediction (RMSEP) being 0.9823 and 0.0333, respectively, with a residual predictive deviation (RPD) of 6.5287. The results indicate that a data fusion of a micro NIR spectrometer and portable Colorimeter is feasible to establish a quantitative prediction model of the moisture content in Longjing tea processing, while multi-sensor data fusion can overcome the problem of a low prediction accuracy for the model established by single sensor data. More importantly, data fusion based on low-cost, fast, and portable detection sensors can provide new ideas and methods for real-time online detection in Longjing tea in actual production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
绝情继父发布了新的文献求助10
1秒前
whitezhu完成签到 ,获得积分10
1秒前
1秒前
Kannan发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
Duffy发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
科研通AI2S应助刘傲薇采纳,获得30
8秒前
ZHAOYUN完成签到 ,获得积分10
9秒前
冰柠檬发布了新的文献求助10
10秒前
天天快乐应助陈sir采纳,获得10
11秒前
Erich发布了新的文献求助10
12秒前
牡丹皮炭发布了新的文献求助10
12秒前
13秒前
13秒前
11111完成签到,获得积分10
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
yar应助科研通管家采纳,获得10
16秒前
han应助科研通管家采纳,获得10
16秒前
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
yar应助科研通管家采纳,获得10
17秒前
han应助科研通管家采纳,获得10
17秒前
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
FIN应助科研通管家采纳,获得30
17秒前
17秒前
ding应助科研通管家采纳,获得10
17秒前
yar应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049