Rapid Detection of Moisture Content in the Processing of Longjing Tea by Micro-Near-Infrared Spectroscopy and a Portable Colorimeter Based on a Data Fusion Strategy

偏最小二乘回归 近红外光谱 传感器融合 色度计 主成分分析 融合 相关系数 含水量 计算机科学 人工智能 模式识别(心理学) 机器学习 工程类 物理 哲学 量子力学 语言学 岩土工程
作者
Xuyan Zong,Xufeng Sheng,Li Li,Jiezhong Zan,Yongwen Jiang,Hanting Zou,Shuai Shen,Haibo Yuan
出处
期刊:Horticulturae [MDPI AG]
卷期号:8 (11): 1007-1007 被引量:3
标识
DOI:10.3390/horticulturae8111007
摘要

Moisture content (MC) is an important indicator to monitor the quality of Longjing tea during processing; therefore, it becomes more critical to develop digital moisture content detection methods for processing. In this study, based on a micro-near infrared (NIR) spectrometer and portable colorimeter, we used Longjing tea under the full processing process as the research object, and used competitive adaptive reweighted sampling (CARS) and a principal component analysis (PCA) to extract characteristic bands of spectral data as well as the principal component reduction processing of the color difference and glossiness data, respectively, combined with sensor data fusion technology to establish a quantitative prediction model of the partial least squares (PLS) for the moisture content of Longjing tea. The PLS quantitative moisture content prediction model, based on middle-level data fusion, obtained the best prediction accuracy and model robustness, with the correlation coefficient of the prediction set (Rp) and the root mean square error of prediction (RMSEP) being 0.9823 and 0.0333, respectively, with a residual predictive deviation (RPD) of 6.5287. The results indicate that a data fusion of a micro NIR spectrometer and portable Colorimeter is feasible to establish a quantitative prediction model of the moisture content in Longjing tea processing, while multi-sensor data fusion can overcome the problem of a low prediction accuracy for the model established by single sensor data. More importantly, data fusion based on low-cost, fast, and portable detection sensors can provide new ideas and methods for real-time online detection in Longjing tea in actual production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璃月稻妻完成签到,获得积分10
1秒前
1秒前
111111完成签到,获得积分10
1秒前
坚强的紊完成签到,获得积分10
1秒前
orixero应助黄紫红蓝采纳,获得10
1秒前
会长大的幸福完成签到 ,获得积分10
2秒前
iNk应助lalala采纳,获得10
2秒前
3秒前
无情念之发布了新的文献求助10
3秒前
100发布了新的文献求助10
3秒前
wanyanjin完成签到,获得积分10
4秒前
周老八发布了新的文献求助10
4秒前
4秒前
4秒前
YL发布了新的文献求助10
5秒前
qucheng完成签到 ,获得积分10
5秒前
Athos_1992完成签到,获得积分10
5秒前
隐形曼青应助一平采纳,获得10
5秒前
6秒前
写不出来完成签到,获得积分10
7秒前
儒雅醉冬完成签到,获得积分10
7秒前
lzp完成签到 ,获得积分10
7秒前
杰森斯坦虎完成签到,获得积分10
7秒前
7秒前
8秒前
叭叭完成签到,获得积分10
8秒前
Accept完成签到,获得积分10
8秒前
W哇完成签到,获得积分10
9秒前
肖肖完成签到,获得积分10
9秒前
9秒前
super小萌萌完成签到,获得积分10
9秒前
April完成签到 ,获得积分10
9秒前
雪白问兰应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得20
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672