Comparative studies of powder flow predictions using milligrams of powder for identifying powder flow issues

流变仪 流动特性 材料科学 合并(业务) 凝聚力(化学) 剪切(地质) 直剪试验 活性成分 复合材料 流变学 化学 有机化学 机械 会计 业务 物理 生物 生物信息学
作者
Tong Deng,Vivek Garg,Laura Pereira Diaz,Daniel Markl,Cameron J. Brown,Alastair J. Florence,M.S.A. Bradley
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:628: 122309-122309 被引量:8
标识
DOI:10.1016/j.ijpharm.2022.122309
摘要

Characterising powder flowability can be challenging when sample quantity is insufficient for a conventional shear cell test, especially in the pharmaceutical industry, where the cost of the active pharmaceutical ingredient (API) used is expensive at an early stage in the drug product development. A previous study demonstrated that powder flowability could be predicted based on powder physical properties and cohesiveness using a small quantity of powder samples (50 mg), but it remained an open question regarding the accuracy of the prediction compared to that measured using industry-standard shear cell testers and its potential to substitute the existing testers. In this study, 16 pharmaceutical powders were selected for a detailed comparative study of the predictive model. The flowability of the powders was predicted using a Bond number and given consolidation stresses, σ1, coupled with the model, where the Bond number represents powder cohesiveness. Compared to the measurements using a Powder Flow Tester (Brookfield) and an FT4 (Freeman Technology) Powder Rheometer shear cell tester, the results showed a good agreement between the predictions and the measurements (<22 % difference) from the two shear cell testers with different consolidation stresses, especially for cohesive materials. The model correctly predicts the class of flowability for 14 and 12 of the 16 powders for the PFT and the FT4, respectively. The study demonstrated that the prediction method of powder flowability using a small sample (50 mg) could substitute a standard shear cell test (>15 g) if the available amount of sample is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sv发布了新的文献求助10
刚刚
LIU发布了新的文献求助10
刚刚
1秒前
1秒前
Owen应助xiuxiu_27采纳,获得10
2秒前
iW完成签到 ,获得积分10
2秒前
3秒前
woommoow完成签到,获得积分10
3秒前
4秒前
4秒前
200303am发布了新的文献求助10
4秒前
4秒前
4秒前
开天神秀完成签到,获得积分10
5秒前
566完成签到,获得积分10
5秒前
jackysuen完成签到,获得积分10
5秒前
MARS完成签到,获得积分10
6秒前
HEIKU应助鲤鱼凛采纳,获得10
7秒前
自然的依丝完成签到,获得积分20
7秒前
step_stone完成签到,获得积分10
8秒前
愉快彩虹发布了新的文献求助10
8秒前
cdu完成签到,获得积分10
9秒前
星辰轨迹完成签到,获得积分10
9秒前
MARS发布了新的文献求助10
9秒前
Jenny应助哈尼妞妞122采纳,获得10
9秒前
岁月轮回发布了新的文献求助10
10秒前
MADKAI发布了新的文献求助10
10秒前
高文强完成签到,获得积分10
10秒前
10秒前
习习应助坚定的诗双采纳,获得10
10秒前
10秒前
er完成签到,获得积分20
11秒前
科研通AI2S应助夯大力采纳,获得10
11秒前
11秒前
11秒前
Hover发布了新的文献求助10
11秒前
852应助无情的白桃采纳,获得10
12秒前
飘逸问薇完成签到 ,获得积分10
13秒前
SYLH应助机智的白猫采纳,获得10
14秒前
大模型应助笑点低蜜蜂采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759