Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension

材料科学 可塑性 高熵合金 晶体孪晶 硬化(计算) 无定形固体 相变 合金 晶体塑性 复合材料 凝聚态物理 结晶学 微观结构 物理 化学 图层(电子)
作者
Kun Jiang,Qian Zhang,Jianguo Li,Xiaoyan Li,Feng Zhao,Bing Hou,Tao Suo
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:159: 103463-103463 被引量:74
标识
DOI:10.1016/j.ijplas.2022.103463
摘要

Ever more extreme environments in advancing industrial applications motivate efforts to design new generation of alloys with excellent mechanical properties. High entropy alloys (HEAs) are considered as promising candidates for bearing extreme loadings. However, the reported results of correspondence between extremely mechanical behaviors and micromechanisms are still in infancy. Here we showed mechanical responses over wide strain rate and temperature ranges and microscopic observations recovered from dynamic uniaxial tension of face-centered cubic (FCC) HEA to reveal plasticity mechanisms transition under various loading conditions. In particular, with an increasing strain during the extreme dynamic tension a sequence of mechanisms, including twinning, detwinning-induced localization, nanoscale body-centered cubic (BCC) phase transformation and symbiotic amorphization, were progressively activated for continued plasticity. At strains over 35%, twin boundaries hindrance to localized band propagation and more dislocations emitting from BCC phases even collectively caused a second sharp rise in hardening. Additionally, the plasticity kept increasing during crystal to amorphization transition, which should be promoted by severe lattice distortion in super-dense dislocations areas. By combining large scale molecular dynamic simulations, the causes of phase transition to BCC lattice structure or even to amorphous bands were explained in depth. The thorough uncovering of these brand-new mechanisms can help understand the plasticity and amorphization of HEAs under the extreme loadings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高山我梦完成签到,获得积分10
刚刚
科研通AI2S应助liutengfei123采纳,获得10
1秒前
我喝白开水完成签到,获得积分10
1秒前
易川完成签到,获得积分10
2秒前
2秒前
纪鹏飞完成签到,获得积分10
2秒前
ty发布了新的文献求助10
2秒前
seven完成签到,获得积分10
2秒前
mawenxing完成签到,获得积分10
3秒前
123123123发布了新的文献求助10
3秒前
呼啦呼啦完成签到,获得积分10
3秒前
3秒前
CipherSage应助kkk采纳,获得10
3秒前
鸣笛应助喂喂采纳,获得10
4秒前
yu001完成签到,获得积分10
4秒前
虚幻盼晴完成签到,获得积分10
5秒前
小郭子发布了新的文献求助10
5秒前
5秒前
晓倩完成签到,获得积分10
5秒前
6秒前
彳亍完成签到,获得积分10
6秒前
cab_rose完成签到,获得积分10
6秒前
LL关注了科研通微信公众号
6秒前
Loooong完成签到,获得积分0
6秒前
waayu完成签到 ,获得积分10
6秒前
Xu完成签到,获得积分10
6秒前
7秒前
7秒前
谢言一完成签到,获得积分10
7秒前
蹦蹦完成签到,获得积分10
7秒前
星点点发布了新的文献求助10
7秒前
Qian完成签到,获得积分10
7秒前
8秒前
小熊完成签到,获得积分10
8秒前
zake完成签到,获得积分10
8秒前
8秒前
sdfwsdfsd完成签到,获得积分10
8秒前
TT2022发布了新的文献求助10
8秒前
烟熏柿子发布了新的文献求助10
8秒前
彭于晏应助于世不凡采纳,获得10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267