Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension

材料科学 可塑性 高熵合金 晶体孪晶 硬化(计算) 无定形固体 相变 合金 晶体塑性 复合材料 凝聚态物理 结晶学 微观结构 物理 化学 图层(电子)
作者
Kun Jiang,Qian Zhang,Jianguo Li,Xiaoyan Li,Feng Zhao,Bing Hou,Tao Suo
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:159: 103463-103463 被引量:61
标识
DOI:10.1016/j.ijplas.2022.103463
摘要

Ever more extreme environments in advancing industrial applications motivate efforts to design new generation of alloys with excellent mechanical properties. High entropy alloys (HEAs) are considered as promising candidates for bearing extreme loadings. However, the reported results of correspondence between extremely mechanical behaviors and micromechanisms are still in infancy. Here we showed mechanical responses over wide strain rate and temperature ranges and microscopic observations recovered from dynamic uniaxial tension of face-centered cubic (FCC) HEA to reveal plasticity mechanisms transition under various loading conditions. In particular, with an increasing strain during the extreme dynamic tension a sequence of mechanisms, including twinning, detwinning-induced localization, nanoscale body-centered cubic (BCC) phase transformation and symbiotic amorphization, were progressively activated for continued plasticity. At strains over 35%, twin boundaries hindrance to localized band propagation and more dislocations emitting from BCC phases even collectively caused a second sharp rise in hardening. Additionally, the plasticity kept increasing during crystal to amorphization transition, which should be promoted by severe lattice distortion in super-dense dislocations areas. By combining large scale molecular dynamic simulations, the causes of phase transition to BCC lattice structure or even to amorphous bands were explained in depth. The thorough uncovering of these brand-new mechanisms can help understand the plasticity and amorphization of HEAs under the extreme loadings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
啦啦啦完成签到,获得积分10
刚刚
coffee发布了新的文献求助10
1秒前
1秒前
科研混子发布了新的文献求助10
1秒前
咿咿呀呀发布了新的文献求助10
1秒前
酷酷碧发布了新的文献求助10
3秒前
飘逸宛丝完成签到,获得积分10
4秒前
qzaima发布了新的文献求助10
4秒前
米酒完成签到,获得积分10
6秒前
step_stone给step_stone的求助进行了留言
6秒前
乐乐应助ayin采纳,获得10
7秒前
无花果应助hhh采纳,获得10
9秒前
叁壹粑粑完成签到,获得积分10
10秒前
酷酷碧完成签到,获得积分10
10秒前
11秒前
磕盐民工完成签到,获得积分10
12秒前
12秒前
忘羡222发布了新的文献求助20
12秒前
我是老大应助TT采纳,获得10
14秒前
14秒前
14秒前
雪鸽鸽完成签到,获得积分10
15秒前
完美世界应助开心青旋采纳,获得10
15秒前
LD完成签到 ,获得积分10
17秒前
xjy完成签到 ,获得积分10
17秒前
qzaima完成签到,获得积分10
17秒前
18秒前
xueshufengbujue完成签到,获得积分10
18秒前
楼寒天发布了新的文献求助10
18秒前
19秒前
科研通AI5应助111111111采纳,获得10
20秒前
20秒前
sunsunsun完成签到,获得积分10
20秒前
哎嘤斯坦完成签到,获得积分10
22秒前
22秒前
sweetbearm应助潦草采纳,获得10
23秒前
sunsunsun发布了新的文献求助10
23秒前
酷波er应助Mars采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824