Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma

有效扩散系数 医学 骨盆 磁共振成像 Sørensen–骰子系数 核医学 活检 放射科 分割 全身成像 图像分割 人工智能 计算机科学
作者
Markus Wennmann,Peter Neher,Nikolas Stanczyk,Kim-Celine Kahl,Jessica Kächele,Vivienn Weru,Thomas Hielscher,Martin Grözinger,Jiří Chmelík,Kevin Sun Zhang,Fabian Bauer,Tobias Nonnenmacher,Manuel Debic,Sandra Sauer,Lukas T. Rotkopf,Anna Jauch,Kai Schlamp,K. Elias,Niels Weinhold,Saif Afat,Marius Horger,Hartmut Goldschmidt,Heinz‐Peter Schlemmer,Tim Weber,Stefan Delorme,Felix T. Kurz,Klaus H. Maier‐Hein
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (4): 273-282 被引量:13
标识
DOI:10.1097/rli.0000000000000932
摘要

Diffusion-weighted magnetic resonance imaging (MRI) is increasingly important in patients with multiple myeloma (MM). The objective of this study was to train and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient (ADC) maps in patients with MM, which automatically segments pelvic bones and subsequently extracts objective, representative ADC measurements from each bone.In this retrospective multicentric study, 180 MRIs from 54 patients were annotated (semi)manually and used to train an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. The quality of the automatic segmentation was evaluated on 15 manually segmented whole-body MRIs from 3 centers using the dice score. In 3 independent test sets from 3 centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation and manual ADC measurements from 2 independent radiologists was evaluated. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed MM who had undergone bone marrow biopsy, ADC measurements were correlated with biopsy results using Spearman correlation.The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, whereas the interrater experiment gave mean dice scores of 0.86, 0.86, and 0.77, respectively. The agreement between radiologists' manual ADC measurements and automatic ADC measurements was as follows: the bias between the first reader and the automatic approach was 49 × 10 -6 mm 2 /s, 7 × 10 -6 mm 2 /s, and -58 × 10 -6 mm 2 /s, and the bias between the second reader and the automatic approach was 12 × 10 -6 mm 2 /s, 2 × 10 -6 mm 2 /s, and -66 × 10 -6 mm 2 /s for the right pelvis, the left pelvis, and the sacral bone, respectively. The bias between reader 1 and reader 2 was 40 × 10 -6 mm 2 /s, 8 × 10 -6 mm 2 /s, and 7 × 10 -6 mm 2 /s, and the mean absolute difference between manual readers was 84 × 10 -6 mm 2 /s, 65 × 10 -6 mm 2 /s, and 75 × 10 -6 mm 2 /s. Automatically extracted ADC values significantly correlated with bone marrow plasma cell infiltration ( R = 0.36, P = 0.007).In this study, a nnU-Net was trained that can automatically segment pelvic bone marrow from whole-body ADC maps in multicentric data sets with a quality comparable to manual segmentations. This approach allows automatic, objective bone marrow ADC measurements, which agree well with manual ADC measurements and can help to overcome interrater variability or nonrepresentative measurements. Automatically extracted ADC values significantly correlate with bone marrow plasma cell infiltration and might be of value for automatic staging, risk stratification, or therapy response assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宝完成签到,获得积分10
2秒前
萧羽发布了新的文献求助10
2秒前
3秒前
小麻花发布了新的文献求助10
3秒前
编织第八大洲关注了科研通微信公众号
4秒前
Orange应助傻傻的芹菜采纳,获得10
5秒前
快马加鞭发布了新的文献求助10
7秒前
回鱼发布了新的文献求助10
7秒前
共享精神应助克利夫兰采纳,获得10
9秒前
10秒前
11秒前
15秒前
16秒前
lzy完成签到 ,获得积分10
19秒前
yupaopao发布了新的文献求助10
19秒前
20秒前
21秒前
cuber完成签到 ,获得积分10
22秒前
黄风小圣完成签到 ,获得积分10
22秒前
克利夫兰发布了新的文献求助10
22秒前
23秒前
25秒前
26秒前
28秒前
30秒前
小麻花完成签到,获得积分20
30秒前
wanci应助tutu采纳,获得10
31秒前
灵儿完成签到,获得积分10
31秒前
一枝完成签到 ,获得积分10
31秒前
ding应助编织第八大洲采纳,获得10
31秒前
生生发布了新的文献求助10
33秒前
大气的画板完成签到 ,获得积分10
33秒前
忽忽完成签到,获得积分10
34秒前
NexusExplorer应助Bonnie采纳,获得10
36秒前
36秒前
WZ完成签到,获得积分10
37秒前
科研通AI2S应助冷艳的海白采纳,获得10
37秒前
yy完成签到,获得积分10
38秒前
Emma发布了新的文献求助10
39秒前
周江阔发布了新的文献求助10
41秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234