Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma

有效扩散系数 医学 骨盆 磁共振成像 Sørensen–骰子系数 核医学 活检 放射科 分割 全身成像 图像分割 人工智能 计算机科学
作者
Markus Wennmann,Peter Neher,Nikolas Stanczyk,Kim-Celine Kahl,Jessica Kächele,Vivienn Weru,Thomas Hielscher,Martin Grözinger,Jiří Chmelík,Kevin Sun Zhang,Fabian Bauer,Tobias Nonnenmacher,Manuel Debic,Sandra Sauer,Lukas T. Rotkopf,Anna Jauch,Kai Schlamp,K. Elias,Niels Weinhold,Saif Afat,Marius Horger,Hartmut Goldschmidt,Heinz‐Peter Schlemmer,Tim Weber,Stefan Delorme,Felix T. Kurz,Klaus H. Maier‐Hein
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:58 (4): 273-282 被引量:13
标识
DOI:10.1097/rli.0000000000000932
摘要

Diffusion-weighted magnetic resonance imaging (MRI) is increasingly important in patients with multiple myeloma (MM). The objective of this study was to train and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient (ADC) maps in patients with MM, which automatically segments pelvic bones and subsequently extracts objective, representative ADC measurements from each bone.In this retrospective multicentric study, 180 MRIs from 54 patients were annotated (semi)manually and used to train an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. The quality of the automatic segmentation was evaluated on 15 manually segmented whole-body MRIs from 3 centers using the dice score. In 3 independent test sets from 3 centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation and manual ADC measurements from 2 independent radiologists was evaluated. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed MM who had undergone bone marrow biopsy, ADC measurements were correlated with biopsy results using Spearman correlation.The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, whereas the interrater experiment gave mean dice scores of 0.86, 0.86, and 0.77, respectively. The agreement between radiologists' manual ADC measurements and automatic ADC measurements was as follows: the bias between the first reader and the automatic approach was 49 × 10 -6 mm 2 /s, 7 × 10 -6 mm 2 /s, and -58 × 10 -6 mm 2 /s, and the bias between the second reader and the automatic approach was 12 × 10 -6 mm 2 /s, 2 × 10 -6 mm 2 /s, and -66 × 10 -6 mm 2 /s for the right pelvis, the left pelvis, and the sacral bone, respectively. The bias between reader 1 and reader 2 was 40 × 10 -6 mm 2 /s, 8 × 10 -6 mm 2 /s, and 7 × 10 -6 mm 2 /s, and the mean absolute difference between manual readers was 84 × 10 -6 mm 2 /s, 65 × 10 -6 mm 2 /s, and 75 × 10 -6 mm 2 /s. Automatically extracted ADC values significantly correlated with bone marrow plasma cell infiltration ( R = 0.36, P = 0.007).In this study, a nnU-Net was trained that can automatically segment pelvic bone marrow from whole-body ADC maps in multicentric data sets with a quality comparable to manual segmentations. This approach allows automatic, objective bone marrow ADC measurements, which agree well with manual ADC measurements and can help to overcome interrater variability or nonrepresentative measurements. Automatically extracted ADC values significantly correlate with bone marrow plasma cell infiltration and might be of value for automatic staging, risk stratification, or therapy response assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥完成签到,获得积分10
刚刚
乐天发布了新的文献求助10
1秒前
1秒前
2秒前
Steven完成签到,获得积分10
3秒前
3秒前
无风海发布了新的文献求助10
3秒前
王佳亮发布了新的文献求助10
6秒前
bulinggu完成签到,获得积分10
6秒前
阿连完成签到,获得积分10
6秒前
颜琪完成签到,获得积分10
8秒前
豆豆发布了新的文献求助10
8秒前
小海贼发布了新的文献求助10
9秒前
传奇3应助无Wen3采纳,获得10
9秒前
ssj发布了新的文献求助10
10秒前
10秒前
苏格拉底的嘲笑完成签到,获得积分10
10秒前
10秒前
11秒前
桐桐应助Emotion采纳,获得10
11秒前
乐正熠彤完成签到,获得积分10
11秒前
lxr完成签到,获得积分10
11秒前
麦子发布了新的文献求助10
13秒前
无风海完成签到 ,获得积分10
14秒前
鸣笛应助snai1采纳,获得20
14秒前
funny完成签到,获得积分10
15秒前
tp040900发布了新的文献求助10
15秒前
fleefly发布了新的文献求助30
15秒前
MchemG应助乐正熠彤采纳,获得20
16秒前
16秒前
17秒前
MchemG应助Rain采纳,获得10
19秒前
19秒前
20秒前
万能图书馆应助yyh采纳,获得30
21秒前
魔幻的心情完成签到,获得积分10
22秒前
达鸟啊发布了新的文献求助10
22秒前
烟雨梦兮应助坐亭下采纳,获得10
22秒前
传奇3应助七面东风采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619