Predicting the Objective and Subjective Clinical Outcomes of Anterior Cruciate Ligament Reconstruction: A Machine Learning Analysis of 432 Patients

医学 前交叉韧带重建术 前交叉韧带 最小临床重要差异 逻辑回归 机器学习 接收机工作特性 人工智能 物理疗法 外科 随机对照试验 内科学 计算机科学
作者
Zipeng Ye,Tianlun Zhang,Chenliang Wu,Yi Qiao,Wei Su,Jiebo Chen,Guoming Xie,Shikui Dong,Junjie Xu,Jinzhong Zhao
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:50 (14): 3786-3795 被引量:22
标识
DOI:10.1177/03635465221129870
摘要

Sports levels, baseline patient-reported outcome measures (PROMs), and surgical procedures are correlated with the outcomes of anterior cruciate ligament reconstruction (ACLR). Machine learning may be superior to conventional statistical methods in making repeatable and accurate predictions.To identify the best-performing machine learning models for predicting the objective and subjective clinical outcomes of ACLR and to determine the most important predictors.Case-control study; Level of evidence, 3.A total of 432 patients who underwent anatomic double-bundle ACLR with hamstring tendon autograft between January 2010 and February 2019 were included in the machine learning analysis. A total of 15 predictive variables and 6 outcome variables were selected to validate the logistic regression, Gaussian naïve Bayes machine, random forest, Extreme Gradient Boosting (XGBoost), isotonically calibrated XGBoost, and sigmoid calibrated XGBoost models. For each clinical outcome, the best-performing model was determined using the area under the receiver operating characteristic curve (AUC), whereas the importance and direction of each predictive variable were demonstrated in a Shapley Additive Explanations summary plot.The AUC and accuracy of the best-performing model, respectively, were 0.944 (excellent) and 98.6% for graft failure; 0.920 (excellent) and 91.4% for residual laxity; 0.930 (excellent) and 91.0% for failure to achieve the minimal clinically important difference (MCID) of the Lysholm score; 0.942 (excellent) and 95.1% for failure to achieve the MCID of the International Knee Documentation Committee (IKDC) score; 0.773 (fair) and 70.5% for return to preinjury sports; and 0.777 (fair) and 69.2% for return to pivoting sports. Medial meniscal resection, participation in competitive sports, and steep posterior tibial slope were top predictors of graft failure, whereas high-grade preoperative knee laxity, long follow-up period, and participation in competitive sports were top predictors of residual laxity. High preoperative Lysholm and IKDC scores were highly predictive of not achieving the MCIDs of PROMs. Young age, male sex, high preoperative IKDC score, and large graft diameter were important predictors of return to preinjury or pivoting sports.Machine learning analysis can provide reliable predictions for the objective and subjective clinical outcomes (graft failure, residual laxity, PROMs, and return to sports) of ACLR. Patient-specific evaluation and decision making are recommended before and after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助50
刚刚
刚刚
刚刚
宋嘉新完成签到,获得积分10
1秒前
慕冬菱发布了新的文献求助10
1秒前
2秒前
李斌发布了新的文献求助20
2秒前
2秒前
2秒前
蜂蜜完成签到,获得积分10
2秒前
NoGtime发布了新的文献求助10
3秒前
不挑食的Marcophages完成签到,获得积分10
3秒前
搜集达人应助Youu采纳,获得10
3秒前
林夕应助文件撤销了驳回
3秒前
bob发布了新的文献求助10
4秒前
5秒前
JJL发布了新的文献求助10
5秒前
慕青应助grace123采纳,获得10
7秒前
ssc发布了新的文献求助10
7秒前
7秒前
快乐咸鱼完成签到 ,获得积分10
8秒前
苹果小玉发布了新的文献求助10
8秒前
CC发布了新的文献求助10
9秒前
ljty完成签到,获得积分10
10秒前
10秒前
杨yyyy发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
坐以待币完成签到 ,获得积分10
14秒前
15秒前
NoGtime完成签到,获得积分10
16秒前
16秒前
nullsci完成签到,获得积分10
16秒前
17秒前
共享精神应助杲杲采纳,获得10
17秒前
迷路安白完成签到 ,获得积分10
17秒前
17秒前
欢喜怀绿发布了新的文献求助10
18秒前
傲慢与偏见zz应助哈哈哈采纳,获得10
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580