Predicting the Objective and Subjective Clinical Outcomes of Anterior Cruciate Ligament Reconstruction: A Machine Learning Analysis of 432 Patients

医学 前交叉韧带重建术 前交叉韧带 最小临床重要差异 逻辑回归 机器学习 接收机工作特性 人工智能 物理疗法 外科 随机对照试验 内科学 计算机科学
作者
Zipeng Ye,Tianlun Zhang,Chenliang Wu,Yi Qiao,Wei Su,Jiebo Chen,Guoming Xie,Shikui Dong,Junjie Xu,Jinzhong Zhao
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:50 (14): 3786-3795 被引量:47
标识
DOI:10.1177/03635465221129870
摘要

Background: Sports levels, baseline patient-reported outcome measures (PROMs), and surgical procedures are correlated with the outcomes of anterior cruciate ligament reconstruction (ACLR). Machine learning may be superior to conventional statistical methods in making repeatable and accurate predictions. Purpose: To identify the best-performing machine learning models for predicting the objective and subjective clinical outcomes of ACLR and to determine the most important predictors. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 432 patients who underwent anatomic double-bundle ACLR with hamstring tendon autograft between January 2010 and February 2019 were included in the machine learning analysis. A total of 15 predictive variables and 6 outcome variables were selected to validate the logistic regression, Gaussian naïve Bayes machine, random forest, Extreme Gradient Boosting (XGBoost), isotonically calibrated XGBoost, and sigmoid calibrated XGBoost models. For each clinical outcome, the best-performing model was determined using the area under the receiver operating characteristic curve (AUC), whereas the importance and direction of each predictive variable were demonstrated in a Shapley Additive Explanations summary plot. Results: The AUC and accuracy of the best-performing model, respectively, were 0.944 (excellent) and 98.6% for graft failure; 0.920 (excellent) and 91.4% for residual laxity; 0.930 (excellent) and 91.0% for failure to achieve the minimal clinically important difference (MCID) of the Lysholm score; 0.942 (excellent) and 95.1% for failure to achieve the MCID of the International Knee Documentation Committee (IKDC) score; 0.773 (fair) and 70.5% for return to preinjury sports; and 0.777 (fair) and 69.2% for return to pivoting sports. Medial meniscal resection, participation in competitive sports, and steep posterior tibial slope were top predictors of graft failure, whereas high-grade preoperative knee laxity, long follow-up period, and participation in competitive sports were top predictors of residual laxity. High preoperative Lysholm and IKDC scores were highly predictive of not achieving the MCIDs of PROMs. Young age, male sex, high preoperative IKDC score, and large graft diameter were important predictors of return to preinjury or pivoting sports. Conclusion: Machine learning analysis can provide reliable predictions for the objective and subjective clinical outcomes (graft failure, residual laxity, PROMs, and return to sports) of ACLR. Patient-specific evaluation and decision making are recommended before and after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小妮完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
jelifo完成签到,获得积分10
7秒前
听话的鸟发布了新的文献求助10
8秒前
9秒前
Capital完成签到,获得积分10
12秒前
小药童完成签到,获得积分0
13秒前
coasting完成签到,获得积分10
13秒前
鲤鱼灵阳完成签到,获得积分10
14秒前
18秒前
嘎嘣脆完成签到 ,获得积分10
18秒前
llll完成签到 ,获得积分0
20秒前
shejiawei发布了新的文献求助10
22秒前
mzrrong完成签到 ,获得积分10
24秒前
bellaluna完成签到 ,获得积分10
24秒前
Linson完成签到,获得积分10
26秒前
gulin完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
nqterysc完成签到,获得积分10
28秒前
研友_VZGVzn完成签到,获得积分10
30秒前
shejiawei完成签到,获得积分10
33秒前
zouni完成签到,获得积分10
34秒前
沉醉的中国钵完成签到 ,获得积分10
34秒前
001完成签到 ,获得积分10
35秒前
da49完成签到,获得积分10
37秒前
Astra完成签到,获得积分10
38秒前
活力的香芦完成签到,获得积分10
42秒前
Loey完成签到,获得积分10
42秒前
某只橘猫君完成签到,获得积分10
42秒前
邓大瓜完成签到,获得积分10
43秒前
44秒前
科研摆渡人完成签到,获得积分10
45秒前
犹豫的雨柏完成签到,获得积分10
46秒前
Tbin完成签到,获得积分10
46秒前
HopeLee完成签到,获得积分10
46秒前
Asumita完成签到,获得积分10
47秒前
DOUBLE完成签到,获得积分10
47秒前
齐阳春完成签到 ,获得积分10
48秒前
ybcy完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645089
求助须知:如何正确求助?哪些是违规求助? 4767716
关于积分的说明 15026372
捐赠科研通 4803503
什么是DOI,文献DOI怎么找? 2568340
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301