Brain-on-Cloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans

计算机科学 磁共振成像 痴呆 云计算 神经影像学 人工智能 可扩展性 疾病 医学 病理 放射科 精神科 数据库 操作系统
作者
Selene Tomassini,Agnese Sbrollini,Giacomo Covella,Paolo Sernani,Nicola Falcionelli,Henning Müller,Micaela Morettini,Laura Burattini,Aldo Franco Dragoni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:227: 107191-107191 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107191
摘要

Alzheimer's disease accounts for approximately 70% of all dementia cases. Cortical and hippocampal atrophy caused by Alzheimer's disease can be appreciated easily from a T1-weighted structural magnetic resonance scan. Since a timely therapeutic intervention during the initial stages of the syndrome has a positive impact on both disease progression and quality of life of affected subjects, Alzheimer's disease diagnosis is crucial. Thus, this study relies on the development of a robust yet lightweight 3D framework, Brain-on-Cloud, dedicated to efficient learning of Alzheimer's disease-related features from 3D structural magnetic resonance whole-brain scans by improving our recent convolutional long short-term memory-based framework with the integration of a set of data handling techniques in addition to the tuning of the model hyper-parameters and the evaluation of its diagnostic performance on independent test data.For this objective, four serial experiments were conducted on a scalable GPU cloud service. They were compared and the hyper-parameters of the best experiment were tuned until reaching the best-performing configuration. In parallel, two branches were designed. In the first branch of Brain-on-Cloud, training, validation and testing were performed on OASIS-3. In the second branch, unenhanced data from ADNI-2 were employed as independent test set, and the diagnostic performance of Brain-on-Cloud was evaluated to prove its robustness and generalization capability. The prediction scores were computed for each subject and stratified according to age, sex and mini mental state examination.In its best guise, Brain-on-Cloud is able to discriminate Alzheimer's disease with an accuracy of 92% and 76%, sensitivity of 94% and 82%, and area under the curve of 96% and 92% on OASIS-3 and independent ADNI-2 test data, respectively.Brain-on-Cloud shows to be a reliable, lightweight and easily-reproducible framework for automatic diagnosis of Alzheimer's disease from 3D structural magnetic resonance whole-brain scans, performing well without segmenting the brain into its portions. Preserving the brain anatomy, its application and diagnostic ability can be extended to other cognitive disorders. Due to its cloud nature, computational lightness and fast execution, it can also be applied in real-time diagnostic scenarios providing prompt clinical decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我先睡了发布了新的文献求助10
刚刚
ZhuYJ发布了新的文献求助10
2秒前
LL爱读书发布了新的文献求助10
3秒前
许三问完成签到 ,获得积分0
3秒前
4秒前
5秒前
空山新雨完成签到,获得积分10
6秒前
7秒前
8秒前
Kenzonvay发布了新的文献求助10
8秒前
英俊的铭应助春春采纳,获得10
9秒前
善良海云发布了新的文献求助10
11秒前
Jiangzhibing发布了新的文献求助10
12秒前
Hey发布了新的文献求助10
12秒前
烟花应助泡菜汤味豆腐采纳,获得10
13秒前
Tourist应助Akihiiiii采纳,获得20
17秒前
Jenny完成签到,获得积分10
19秒前
香蕉觅云应助Jiangzhibing采纳,获得10
21秒前
月亮煮粥完成签到,获得积分10
24秒前
风味烤羊腿完成签到,获得积分0
25秒前
30秒前
jbh完成签到,获得积分10
31秒前
顺利顺利顺利完成签到 ,获得积分10
35秒前
啦啦啦完成签到,获得积分10
38秒前
41秒前
着慵懒时光的猫完成签到,获得积分10
43秒前
45秒前
45秒前
琪琪发布了新的文献求助10
46秒前
HWJ关闭了HWJ文献求助
47秒前
48秒前
48秒前
柠檬完成签到 ,获得积分10
50秒前
胡平完成签到,获得积分10
52秒前
Orange应助超帅蓝血采纳,获得10
54秒前
健忘的绿草完成签到,获得积分20
58秒前
l37u2n发布了新的文献求助10
59秒前
月满西楼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003