Brain-on-Cloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans

计算机科学 磁共振成像 痴呆 云计算 神经影像学 人工智能 可扩展性 疾病 医学 病理 放射科 精神科 数据库 操作系统
作者
Selene Tomassini,Agnese Sbrollini,Giacomo Covella,Paolo Sernani,Nicola Falcionelli,Henning Müller,Micaela Morettini,Laura Burattini,Aldo Franco Dragoni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107191-107191 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107191
摘要

Alzheimer's disease accounts for approximately 70% of all dementia cases. Cortical and hippocampal atrophy caused by Alzheimer's disease can be appreciated easily from a T1-weighted structural magnetic resonance scan. Since a timely therapeutic intervention during the initial stages of the syndrome has a positive impact on both disease progression and quality of life of affected subjects, Alzheimer's disease diagnosis is crucial. Thus, this study relies on the development of a robust yet lightweight 3D framework, Brain-on-Cloud, dedicated to efficient learning of Alzheimer's disease-related features from 3D structural magnetic resonance whole-brain scans by improving our recent convolutional long short-term memory-based framework with the integration of a set of data handling techniques in addition to the tuning of the model hyper-parameters and the evaluation of its diagnostic performance on independent test data.For this objective, four serial experiments were conducted on a scalable GPU cloud service. They were compared and the hyper-parameters of the best experiment were tuned until reaching the best-performing configuration. In parallel, two branches were designed. In the first branch of Brain-on-Cloud, training, validation and testing were performed on OASIS-3. In the second branch, unenhanced data from ADNI-2 were employed as independent test set, and the diagnostic performance of Brain-on-Cloud was evaluated to prove its robustness and generalization capability. The prediction scores were computed for each subject and stratified according to age, sex and mini mental state examination.In its best guise, Brain-on-Cloud is able to discriminate Alzheimer's disease with an accuracy of 92% and 76%, sensitivity of 94% and 82%, and area under the curve of 96% and 92% on OASIS-3 and independent ADNI-2 test data, respectively.Brain-on-Cloud shows to be a reliable, lightweight and easily-reproducible framework for automatic diagnosis of Alzheimer's disease from 3D structural magnetic resonance whole-brain scans, performing well without segmenting the brain into its portions. Preserving the brain anatomy, its application and diagnostic ability can be extended to other cognitive disorders. Due to its cloud nature, computational lightness and fast execution, it can also be applied in real-time diagnostic scenarios providing prompt clinical decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wtf关闭了Wtf文献求助
刚刚
1秒前
123完成签到,获得积分20
1秒前
wangyun完成签到,获得积分10
1秒前
2秒前
FashionBoy应助雪白小猫咪采纳,获得10
2秒前
nanimonai7完成签到,获得积分10
2秒前
SCF完成签到,获得积分20
3秒前
领导范儿应助huanghao采纳,获得10
3秒前
4秒前
爆米花应助heli采纳,获得10
4秒前
FashionBoy应助曹姗采纳,获得10
4秒前
4秒前
ZZZZ发布了新的文献求助10
6秒前
HZY完成签到,获得积分10
6秒前
坚强莺发布了新的文献求助10
6秒前
6秒前
彭于晏应助77777采纳,获得10
6秒前
orixero应助volzzz采纳,获得10
6秒前
elena发布了新的文献求助10
7秒前
7秒前
dopamine完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
田様应助123采纳,获得10
10秒前
AXXXin发布了新的文献求助10
10秒前
acuter发布了新的文献求助10
10秒前
11秒前
11秒前
清清发布了新的文献求助10
12秒前
12秒前
目土土发布了新的文献求助10
12秒前
14秒前
禾苗完成签到 ,获得积分10
14秒前
14秒前
平淡无敌完成签到,获得积分10
14秒前
14秒前
Mor发布了新的文献求助10
14秒前
ZZZZ完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866