Brain-on-Cloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans

计算机科学 磁共振成像 痴呆 云计算 神经影像学 人工智能 可扩展性 疾病 医学 病理 放射科 精神科 数据库 操作系统
作者
Selene Tomassini,Agnese Sbrollini,Giacomo Covella,Paolo Sernani,Nicola Falcionelli,Henning Müller,Micaela Morettini,Laura Burattini,Aldo Franco Dragoni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:227: 107191-107191 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107191
摘要

Alzheimer's disease accounts for approximately 70% of all dementia cases. Cortical and hippocampal atrophy caused by Alzheimer's disease can be appreciated easily from a T1-weighted structural magnetic resonance scan. Since a timely therapeutic intervention during the initial stages of the syndrome has a positive impact on both disease progression and quality of life of affected subjects, Alzheimer's disease diagnosis is crucial. Thus, this study relies on the development of a robust yet lightweight 3D framework, Brain-on-Cloud, dedicated to efficient learning of Alzheimer's disease-related features from 3D structural magnetic resonance whole-brain scans by improving our recent convolutional long short-term memory-based framework with the integration of a set of data handling techniques in addition to the tuning of the model hyper-parameters and the evaluation of its diagnostic performance on independent test data.For this objective, four serial experiments were conducted on a scalable GPU cloud service. They were compared and the hyper-parameters of the best experiment were tuned until reaching the best-performing configuration. In parallel, two branches were designed. In the first branch of Brain-on-Cloud, training, validation and testing were performed on OASIS-3. In the second branch, unenhanced data from ADNI-2 were employed as independent test set, and the diagnostic performance of Brain-on-Cloud was evaluated to prove its robustness and generalization capability. The prediction scores were computed for each subject and stratified according to age, sex and mini mental state examination.In its best guise, Brain-on-Cloud is able to discriminate Alzheimer's disease with an accuracy of 92% and 76%, sensitivity of 94% and 82%, and area under the curve of 96% and 92% on OASIS-3 and independent ADNI-2 test data, respectively.Brain-on-Cloud shows to be a reliable, lightweight and easily-reproducible framework for automatic diagnosis of Alzheimer's disease from 3D structural magnetic resonance whole-brain scans, performing well without segmenting the brain into its portions. Preserving the brain anatomy, its application and diagnostic ability can be extended to other cognitive disorders. Due to its cloud nature, computational lightness and fast execution, it can also be applied in real-time diagnostic scenarios providing prompt clinical decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blebui应助姜茶采纳,获得10
刚刚
幼稚园小新完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
1秒前
snowball完成签到,获得积分10
1秒前
2秒前
duoduozs发布了新的文献求助10
2秒前
velpro完成签到,获得积分10
2秒前
qqqq完成签到,获得积分10
2秒前
3秒前
3秒前
溪风完成签到,获得积分10
3秒前
ting发布了新的文献求助10
4秒前
5秒前
Xxxnnian发布了新的文献求助30
5秒前
听风暖完成签到 ,获得积分10
6秒前
li发布了新的文献求助10
6秒前
赘婿应助伊布采纳,获得10
6秒前
gaga完成签到,获得积分10
6秒前
小蘑菇应助reck采纳,获得10
7秒前
清风荷影完成签到 ,获得积分10
7秒前
酷波er应助动如脱兔采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
圈圈发布了新的文献求助10
9秒前
易达发布了新的文献求助10
9秒前
追梦人完成签到,获得积分10
9秒前
9秒前
实验室扛把子完成签到,获得积分10
9秒前
在水一方应助清爽忆山采纳,获得10
10秒前
小马甲应助日月山河永在采纳,获得10
10秒前
娃娃发布了新的文献求助10
11秒前
11秒前
任医生发布了新的文献求助10
11秒前
冷眼观潮完成签到,获得积分10
11秒前
11秒前
守约发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672