PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images

标识符 遥感 计算机科学 鉴定(生物学) 数据挖掘 实时计算 分布式计算 光伏系统 人工智能 地理 工程类 电气工程 计算机网络 生物 植物
作者
Ning Lu,Liang Li,Jun Qin
出处
期刊:Applied Energy [Elsevier]
卷期号:365: 123311-123311 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123311
摘要

The precise location and size of distributed photovoltaics (PVs) is critical to infer the actual installed capacity and assess the remaining PV generation potential, and is therefore the cornerstone of strategic planning for distributed PV deployment. However, identifying small-scale distributed PVs in complex contexts from high spatial resolution remote sensing (HSRRS) images to obtain their information remains an issue. In this study, we propose an advanced deep learning model, called PV Identifier, to enhance the identification accuracy of small-scale PV systems from HSRRS images. PV Identifier uses a fine-grained feature layer (FFL) compatible with the size of PVs to improve the detection capability of the small-scale distributed PVs. At the same time, it effectively distinguishes between PVs and similar background using a novel semantic constraint module (SCM). We test PV Identifier on a distributed PV dataset in California. Experiments show that the inclusion of the FFL positively affects the model's sensitivity to small distributed PVs. Specifically, the PV Identifier with the FFL increases the Recall of identifying residential rooftop PVs by 1.9% compared to the model without the FFL. In addition, the integration of the SCM effectively improves the model's ability to locate residential rooftop PVs in complex environments, resulting in a 1.8% increase in the corresponding Precision. Compared to the four commonly used segmentation models, PV Identifier exhibits superior identification performance for residential rooftop PVs and commercial and industrial PVs, with an Intersection over Union (IoU) of 74.1% and 89.3%, respectively, which is at least 4.1% and 1.8% higher than other models. Overall, PV Identifier provides a viable solution to the problem of identifying small-scale distributed PV in complex backgrounds from HSRRS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
京润过发布了新的文献求助10
刚刚
yangyangyang完成签到,获得积分10
刚刚
brainxue完成签到,获得积分10
1秒前
七七完成签到,获得积分10
1秒前
Er1c完成签到,获得积分10
2秒前
不问悲欢发布了新的文献求助10
2秒前
jianglan关注了科研通微信公众号
2秒前
bofu发布了新的文献求助10
4秒前
4秒前
彭于晏应助孟长歌采纳,获得10
5秒前
xio完成签到,获得积分20
6秒前
专通下水道完成签到 ,获得积分10
7秒前
7秒前
fantasy发布了新的文献求助10
8秒前
10秒前
坚定的代芙完成签到,获得积分10
11秒前
无尽夏发布了新的文献求助30
12秒前
sss完成签到 ,获得积分10
12秒前
12秒前
现代觅波应助bofu采纳,获得10
13秒前
幽默胜发布了新的文献求助10
13秒前
学海无涯完成签到,获得积分20
14秒前
京润过完成签到,获得积分10
14秒前
孟长歌发布了新的文献求助10
16秒前
酷波er应助liu采纳,获得10
16秒前
17秒前
17秒前
hhrr完成签到,获得积分10
18秒前
小醒发布了新的文献求助10
19秒前
19秒前
coisini完成签到,获得积分10
20秒前
华仔应助1680Y采纳,获得20
21秒前
22秒前
夜晚不可以没有星星完成签到,获得积分10
23秒前
23秒前
Ava应助hhrr采纳,获得10
24秒前
summy发布了新的文献求助10
25秒前
25秒前
1111发布了新的文献求助10
25秒前
元谷雪应助bofu采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514588
求助须知:如何正确求助?哪些是违规求助? 3096951
关于积分的说明 9233306
捐赠科研通 2791978
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031