Source Code Vulnerability Detection: Combining Code Language Models and Code Property Graphs

编码(集合论) 计算机科学 财产(哲学) 源代码 脆弱性(计算) 程序设计语言 计算机安全 哲学 集合(抽象数据类型) 认识论
作者
Ruitong Liu,Yanbin Wang,Haitao Xu,Bin Liu,Sun Jian-guo,Zhenhao Guo,Wenrui Ma
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.14719
摘要

Currently, deep learning successfully applies to code vulnerability detection by learning from code sequences or property graphs. However, sequence-based methods often overlook essential code attributes such as syntax, control flow, and data dependencies, whereas graph-based approaches might underestimate the semantics of code and face challenges in capturing long-distance contextual information. To address this gap, we propose Vul-LMGNN, a unified model that combines pre-trained code language models with code property graphs for code vulnerability detection. Vul-LMGNN constructs a code property graph that integrates various code attributes (including syntax, flow control, and data dependencies) into a unified graph structure, thereafter leveraging pre-trained code model to extract local semantic features as node embeddings in the code property graph. Furthermore, to effectively retain dependency information among various attributes, we introduce a gated code Graph Neural Network (GNN). By jointly training the code language model and the gated code GNN modules in Vul-LMGNN, our proposed method efficiently leverages the strengths of both mechanisms. Finally, we utilize a pre-trained CodeBERT as an auxiliary classifier, with the final detection results derived by learning the linear interpolation of Vul-LMGNN and CodeBERT. The proposed method, evaluated across four real-world vulnerability datasets, demonstrated superior performance compared to six state-of-the-art approaches. Our source code could be accessed via the link: https://github.com/Vul-LMGNN/vul-LMGGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chentong0完成签到 ,获得积分10
刚刚
柴柴完成签到,获得积分10
1秒前
1秒前
fengpu完成签到,获得积分10
1秒前
ln发布了新的文献求助10
1秒前
创口贴贴完成签到,获得积分10
2秒前
那地方完成签到,获得积分10
2秒前
香蕉觅云应助maz123456采纳,获得10
2秒前
ekm7k完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
mmz完成签到 ,获得积分10
4秒前
fiber关注了科研通微信公众号
4秒前
4秒前
4秒前
所所应助人不犯二枉少年采纳,获得10
4秒前
4秒前
4秒前
舟x完成签到 ,获得积分10
5秒前
5秒前
阿媛呐完成签到,获得积分10
5秒前
创口贴贴发布了新的文献求助10
6秒前
6秒前
6秒前
安详向日葵完成签到 ,获得积分10
6秒前
无花果应助Star1983采纳,获得10
6秒前
以筱发布了新的文献求助10
7秒前
8秒前
小刘发布了新的文献求助10
8秒前
8秒前
李某某发布了新的文献求助30
8秒前
9秒前
JamesPei应助lyh采纳,获得10
9秒前
隐形曼青应助LY采纳,获得10
9秒前
罐头胖听发布了新的文献求助10
10秒前
10秒前
10秒前
lixm发布了新的文献求助10
10秒前
ENHNG完成签到,获得积分10
10秒前
chentong完成签到 ,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582