Source Code Vulnerability Detection: Combining Code Language Models and Code Property Graphs

编码(集合论) 计算机科学 财产(哲学) 源代码 脆弱性(计算) 程序设计语言 计算机安全 哲学 集合(抽象数据类型) 认识论
作者
Ruitong Liu,Yanbin Wang,Haitao Xu,Bin Liu,Sun Jian-guo,Zhenhao Guo,Wenrui Ma
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.14719
摘要

Currently, deep learning successfully applies to code vulnerability detection by learning from code sequences or property graphs. However, sequence-based methods often overlook essential code attributes such as syntax, control flow, and data dependencies, whereas graph-based approaches might underestimate the semantics of code and face challenges in capturing long-distance contextual information. To address this gap, we propose Vul-LMGNN, a unified model that combines pre-trained code language models with code property graphs for code vulnerability detection. Vul-LMGNN constructs a code property graph that integrates various code attributes (including syntax, flow control, and data dependencies) into a unified graph structure, thereafter leveraging pre-trained code model to extract local semantic features as node embeddings in the code property graph. Furthermore, to effectively retain dependency information among various attributes, we introduce a gated code Graph Neural Network (GNN). By jointly training the code language model and the gated code GNN modules in Vul-LMGNN, our proposed method efficiently leverages the strengths of both mechanisms. Finally, we utilize a pre-trained CodeBERT as an auxiliary classifier, with the final detection results derived by learning the linear interpolation of Vul-LMGNN and CodeBERT. The proposed method, evaluated across four real-world vulnerability datasets, demonstrated superior performance compared to six state-of-the-art approaches. Our source code could be accessed via the link: https://github.com/Vul-LMGNN/vul-LMGGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koh完成签到,获得积分10
刚刚
1秒前
123发布了新的文献求助10
2秒前
minoricl发布了新的文献求助10
5秒前
111发布了新的文献求助10
6秒前
明亮的绫完成签到 ,获得积分10
7秒前
小巧雪碧发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
任性吐司完成签到 ,获得积分10
9秒前
11秒前
11秒前
恶恶么v发布了新的文献求助10
11秒前
成就芷容发布了新的文献求助10
12秒前
研友_GZbV4Z发布了新的文献求助30
12秒前
杰克发布了新的文献求助10
13秒前
14秒前
Erik发布了新的文献求助10
15秒前
2869477896发布了新的文献求助10
15秒前
扬嘉諵发布了新的文献求助10
16秒前
希望天下0贩的0应助杰克采纳,获得10
16秒前
16秒前
tmr发布了新的文献求助10
16秒前
可爱的函函应助彭十采纳,获得10
16秒前
白云四季发布了新的文献求助10
17秒前
17秒前
科研达人发布了新的文献求助30
17秒前
momo发布了新的文献求助10
17秒前
zzzzzyy完成签到,获得积分10
18秒前
顾矜应助活力小熊猫采纳,获得10
19秒前
20秒前
20秒前
et完成签到,获得积分10
22秒前
完美世界应助超级李包包采纳,获得10
23秒前
勤奋灯泡发布了新的文献求助10
25秒前
君莫笑发布了新的文献求助10
25秒前
Erik完成签到,获得积分10
26秒前
minoricl完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465938
求助须知:如何正确求助?哪些是违规求助? 3058897
关于积分的说明 9063789
捐赠科研通 2749294
什么是DOI,文献DOI怎么找? 1508454
科研通“疑难数据库(出版商)”最低求助积分说明 696922
邀请新用户注册赠送积分活动 696607