材料科学
锂(药物)
电极
电解质
离子
阳极
纳米颗粒
阴极
石墨
化学工程
纳米技术
复合材料
物理化学
医学
化学
物理
量子力学
工程类
内分泌学
作者
Jeong‐Hee Choi,Hae Gon Lee,Min‐Ho Lee,Sangmin Lee,Junhee Kang,Joo Hyeong Suh,Min‐Sik Park,Jong‐Won Lee
标识
DOI:10.1002/adfm.202400414
摘要
Abstract Thick and dense graphite anodes used in lithium‐ion batteries (LIBs) suffer from sluggish reaction kinetics at the electrode level, causing Li metal plating on their surfaces and significant capacity decay at high charging currents. Thus, it is crucial to tailor electrodes based on a comprehensive understanding of the complex reaction kinetics to realize fast‐charging LIBs. A multi‐interface strategy is proposed for electrode tailoring using Al 2 O 3 nanoparticles to enhance fast‐charging capability while suppressing Li metal plating. Molecular dynamics simulations suggest that the incorporated Al 2 O 3 nanoparticles perturb the charge and molecule distributions in the boundary layer, forming an “interfacial highway” for facile Li + transport at the Al 2 O 3 /electrolyte interface. This pushes Li + deeper into the electrode and homogenizes the Li + flux across the electrode's top surface. A full cell assembled with the Al 2 O 3 ‐decorated graphite electrode (areal capacity of 4.4 mAh cm −2 ) exhibits excellent cyclability with a capacity retention of 83.4% over 500 cycles even at a 2C rate without any noticeable signal for undesirable Li plating. The role of interfacial highways predicted by theoretical computations is further validated using a pouch‐type full cell (500 mAh). These findings provide insights into the interfacial and microstructural design of high‐capacity graphite electrodes for fast‐charging, long‐cycling LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI