期限(时间)
材料科学
激光器
钙钛矿(结构)
光电子学
理论(学习稳定性)
环境科学
核工程
遥感
工程物理
光学
计算机科学
工程类
物理
地质学
化学工程
天文
机器学习
作者
Yujin Jeong,Yejin Kim,Hanseul Lee,Seoyeon Ko,Seung Sik Ham,Hye Ri Jung,Jun H. Choi,Won Mok Kim,Jeung‐hyun Jeong,Seokhyun Yoon,David J. Hwang,Gee Yeong Kim
出处
期刊:Solar RRL
[Wiley]
日期:2024-03-26
卷期号:8 (8)
被引量:1
标识
DOI:10.1002/solr.202301040
摘要
Although the efficiency of hybrid lead‐halide perovskite solar cells has been significantly improved, the efficiency gap between small‐area cells and large modules continues to be a considerable challenge. Laser scribing is essential for realizing high‐quality monolithic connections; however, the laser‐induced material changes and their correlation with device performance have not been yet well understood, in particular for the perovskite material systems. In this study, the effect of P3 laser processing conditions on device performance and stability is explained. The most interesting finding is an improvement in open‐circuit voltage ( V OC ) after aging and long‐term stability under low‐laser‐overlap conditions that avoid direct laser exposure to perovskite material system as a source of material degradation. It is found that a high‐laser‐overlap during P3 results in a lower fill factor after aging and accelerated degradation due to larger portion of perovskite directly exposed to laser during the scribing process. The increased V OC under low‐overlap conditions is attributed to the increased PbI 2 formation in the P3 region. Moreover, a minimal pulse overlap is favorable for preserving long‐term device stability. Finally, a perovskite minimodule with an efficiency of 20.24% is successfully developed as a result of these findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI