RGB-D Salient Object Detection Based on Cross-Modal and Cross-Level Feature Fusion.

人工智能 计算机科学 计算机视觉 情态动词 模式识别(心理学) 融合 特征(语言学) 目标检测 RGB颜色模型 传感器融合 语言学 哲学 化学 高分子化学
作者
Yanbin Peng,Zhinian Zhai,Mingkun Feng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 45134-45146 被引量:2
标识
DOI:10.1109/access.2024.3381524
摘要

Existing RGB-D saliency detection models have not fully considered the differences between features at various levels, and lack an effective mechanism for cross-level feature fusion.This article proposes a novel cross-modality cross-level fusion learning framework.The framework mainly contains three modules: Attention Enhancement Module (AEM), Modality Feature Fusion Module (MFM), and Graph Reasoning Module (GRM).AEM is used to enhance the features of the two modalities.MFM is used to integrate the features of the two modalities to achieve cross-modality feature fusion.Subsequently, the modality fusion features are divided into high-level features and low-level features.The high-level features contain the semantic localization information of salient objects, and the low-level features contain the detailed information of salient objects.GRM extends the semantic localization information of salient objects in the high-level features from pixel features to the entire salient object area, thereby achieving cross-level feature fusion.This framework can effectively eliminate background noise and enhance the model's expressiveness.Extensive experiments were conducted on seven widely used datasets, and the results show that the new method outperforms nine current state-of-the-art RGB-D SOD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
ding应助好英俊的马铃薯!采纳,获得10
2秒前
z1完成签到,获得积分10
2秒前
雯十七完成签到,获得积分10
2秒前
氼乚发布了新的文献求助10
3秒前
3秒前
默默的月光完成签到,获得积分10
4秒前
我发大文章完成签到,获得积分10
4秒前
Komorebi完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
共享精神应助清客采纳,获得10
5秒前
yzhang发布了新的文献求助10
6秒前
ZSQ完成签到,获得积分10
6秒前
Komorebi发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
杨欢完成签到,获得积分20
9秒前
gds2021完成签到,获得积分10
9秒前
Yvonne完成签到,获得积分10
9秒前
仇道罡发布了新的文献求助10
10秒前
堪萧发布了新的文献求助10
10秒前
moonlight发布了新的文献求助10
11秒前
11秒前
lisn发布了新的文献求助10
12秒前
顾矜应助xumengyu采纳,获得10
12秒前
CN柏原崇完成签到,获得积分10
12秒前
Yvonne发布了新的文献求助10
12秒前
酷波er应助林登万采纳,获得10
12秒前
FashionBoy应助林登万采纳,获得10
12秒前
科研小白应助林登万采纳,获得10
12秒前
科研小白应助林登万采纳,获得10
12秒前
英姑应助林登万采纳,获得10
12秒前
ddd发布了新的文献求助10
13秒前
13秒前
pluto应助hotzera采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916