An Improved Identification Method of Pipeline Leak Using Acoustic Emission Signal

声发射 检漏 管道(软件) 鉴定(生物学) 信号(编程语言) 声学 泄漏 环境科学 管道运输 计算机科学 石油工程 工程类 环境工程 物理 植物 生物 程序设计语言
作者
Jialin Cui,Meng Zhang,Xianqiang Qu,Jinzhao Zhang,Lin Chen
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (4): 625-625 被引量:3
标识
DOI:10.3390/jmse12040625
摘要

Pipelines constitute a vital component in offshore oil and gas operations, subjected to prolonged exposure to a range of alternating loads. Safeguarding their integrity, particularly through meticulous leak detection, is essential for ensuring safe and reliable operation. Acoustic emission detection emerges as an effective approach for monitoring pipeline leaks, demanding subsequent rigorous data analysis. Traditional analysis techniques like wavelet analysis, empirical mode decomposition (EMD), variational mode decomposition (VMD), and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) often yield results with considerable randomness, adversely affecting leak detection accuracy. This study introduces an enhanced damage recognition methodology, integrating improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and probabilistic neural networks (PNN) for more accurate pipeline leak identification. This novel approach combines laboratory-acquired acoustic emission signals from leaks with ambient noise signals. Application of ICEEMDAN to these composite signals isolates eight intrinsic mode functions (IMFs), with subsequent time–frequency analysis providing insight into their frequency structures and feature vectors. These vectors are then employed to train a PNN, culminating in a robust neural network model tailored for leak detection. Conduct experimental research on pipeline leakage identification, focusing on the local structure of offshore platforms, experimental research validates the superiority of the ICEEMDAN–PNN model over existing methods like EMD, VMD, and CEEMDAN paired with PNN, particularly in terms of stability, anti-interference capabilities, and detection precision. Notably, even amidst integrated noise, the ICEEMDAN–PNN model maintains a remarkable 98% accuracy rate in identifying pipeline leaks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的可仁完成签到,获得积分20
2秒前
xm发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
yulia发布了新的文献求助30
5秒前
Akim应助夏青荷采纳,获得10
7秒前
zhidong发布了新的文献求助30
7秒前
7秒前
Hh发布了新的文献求助10
8秒前
研友_VZG7GZ应助生椰拿铁采纳,获得10
9秒前
白象发布了新的文献求助10
9秒前
Zn应助梵高的向日葵采纳,获得10
9秒前
畅快菠萝完成签到,获得积分10
9秒前
10秒前
深情安青应助GQL采纳,获得10
10秒前
11秒前
道阻且长发布了新的文献求助10
12秒前
顾矜应助daidai6633采纳,获得10
13秒前
ZHX发布了新的文献求助10
14秒前
君临完成签到 ,获得积分10
14秒前
科研通AI5应助123采纳,获得10
15秒前
啦啦啦发布了新的文献求助10
15秒前
传奇3应助道阻且长采纳,获得10
15秒前
16秒前
科研通AI5应助xm采纳,获得10
16秒前
ch发布了新的文献求助10
16秒前
嘉心糖给嘉心糖的求助进行了留言
17秒前
17秒前
绿色催化完成签到,获得积分10
18秒前
小蘑菇应助111111111采纳,获得10
19秒前
上官若男应助夏青荷采纳,获得10
19秒前
20秒前
20秒前
科研通AI5应助默默的妙竹采纳,获得10
20秒前
夜阑风静发布了新的文献求助10
21秒前
哈哈发布了新的文献求助30
21秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078