计算机科学
架空(工程)
人工智能
软件部署
机器学习
域适应
任务(项目管理)
过程(计算)
领域(数学分析)
绩效改进
适应(眼睛)
水准点(测量)
光学(聚焦)
编码(集合论)
计算机工程
软件工程
集合(抽象数据类型)
程序设计语言
物理
运营管理
管理
大地测量学
分类器(UML)
光学
经济
地理
数学分析
数学
作者
Wenlve Zhou,Zhiheng Zhou
标识
DOI:10.1109/tcsvt.2024.3391304
摘要
This paper addresses two vital challenges in Unsupervised Domain Adaptation (UDA) with a focus on harnessing the power of Vision-Language Pre-training (VLP) models. Firstly, UDA has primarily relied on ImageNet pre-trained models. However, the potential of VLP models in UDA remains largely unexplored. The rich representation of VLP models holds significant promise for enhancing UDA tasks. To address this, we propose a novel method called Cross-Modal Knowledge Distillation (CMKD), leveraging VLP models as teacher models to guide the learning process in the target domain, resulting in state-of-the-art performance. Secondly, current UDA paradigms involve training separate models for each task, leading to significant storage overhead and impractical model deployment as the number of transfer tasks grows. To overcome this challenge, we introduce Residual Sparse Training (RST) exploiting the benefits conferred by VLP's extensive pre-training, a technique that requires minimal adjustment (approximately 0.1\%$\sim$0.5\%) of VLP model parameters to achieve performance comparable to fine-tuning. Combining CMKD and RST, we present a comprehensive solution that effectively leverages VLP models for UDA tasks while reducing storage overhead for model deployment. Furthermore, CMKD can serve as a baseline in conjunction with other methods like FixMatch, enhancing the performance of UDA. Our proposed method outperforms existing techniques on standard benchmarks. Our code will be available at: https://github.com/Wenlve-Zhou/VLP-UDA.
科研通智能强力驱动
Strongly Powered by AbleSci AI