RAPHIA: A deep learning pipeline for the registration of MRI and whole-mount histopathology images of the prostate

安装 组织病理学 管道(软件) 人工智能 前列腺 计算机科学 深度学习 磁共振成像 医学 放射科 病理 内科学 操作系统 癌症 程序设计语言
作者
Wei Shao,Sulaiman Vesal,Simon John Christoph Soerensen,Indrani Bhattacharya,Negar Golestani,Rikiya Yamashita,Christian A. Kunder,Richard E. Fan,Pejman Ghanouni,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108318-108318 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108318
摘要

Image registration can map the ground truth extent of prostate cancer from histopathology images onto MRI, facilitating the development of machine learning methods for early prostate cancer detection. Here, we present RAdiology PatHology Image Alignment (RAPHIA), an end-to-end pipeline for efficient and accurate registration of MRI and histopathology images. RAPHIA automates several time-consuming manual steps in existing approaches including prostate segmentation, estimation of the rotation angle and horizontal flipping in histopathology images, and estimation of MRI-histopathology slice correspondences. By utilizing deep learning registration networks, RAPHIA substantially reduces computational time. Furthermore, RAPHIA obviates the need for a multimodal image similarity metric by transferring histopathology image representations to MRI image representations and vice versa. With the assistance of RAPHIA, novice users achieved expert-level performance, and their mean error in estimating histopathology rotation angle was reduced by 51% (12 degrees vs 8 degrees), their mean accuracy of estimating histopathology flipping was increased by 5% (95.3% vs 100%), and their mean error in estimating MRI-histopathology slice correspondences was reduced by 45% (1.12 slices vs 0.62 slices). When compared to a recent conventional registration approach and a deep learning registration approach, RAPHIA achieved better mapping of histopathology cancer labels, with an improved mean Dice coefficient of cancer regions outlined on MRI and the deformed histopathology (0.44 vs 0.48 vs 0.50), and a reduced mean per-case processing time (51 vs 11 vs 4.5 min). The improved performance by RAPHIA allows efficient processing of large datasets for the development of machine-learning models for prostate cancer detection on MRI. Our code is publicly available at: https://github.com/pimed/RAPHIA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
Xy发布了新的文献求助10
4秒前
peace给peace的求助进行了留言
5秒前
chen关注了科研通微信公众号
6秒前
123发布了新的文献求助10
6秒前
狮子座发布了新的文献求助10
9秒前
烟花应助CY采纳,获得10
10秒前
12秒前
只爱科研狗完成签到,获得积分10
14秒前
15秒前
15秒前
小陈爱科研完成签到,获得积分10
15秒前
15秒前
16秒前
倩Q完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
chen发布了新的文献求助10
19秒前
小白发布了新的文献求助10
21秒前
FashionBoy应助依紫采纳,获得10
22秒前
寒江雪完成签到,获得积分10
22秒前
鳄鱼蛋完成签到,获得积分10
22秒前
CY发布了新的文献求助10
23秒前
叫我陈老师啊完成签到,获得积分10
23秒前
香蕉觅云应助热心的诗云采纳,获得10
26秒前
26秒前
28秒前
peace发布了新的文献求助10
33秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
完美世界应助科研通管家采纳,获得10
36秒前
Hello应助科研通管家采纳,获得10
36秒前
Oracle应助科研通管家采纳,获得20
36秒前
Hello应助科研通管家采纳,获得10
36秒前
pluto应助科研通管家采纳,获得10
36秒前
所所应助科研通管家采纳,获得10
36秒前
Owen应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975