RAPHIA: A deep learning pipeline for the registration of MRI and whole-mount histopathology images of the prostate

安装 组织病理学 管道(软件) 人工智能 前列腺 计算机科学 深度学习 磁共振成像 医学 放射科 病理 内科学 癌症 程序设计语言 操作系统
作者
Wei Shao,Sulaiman Vesal,Simon John Christoph Soerensen,Indrani Bhattacharya,Negar Golestani,Rikiya Yamashita,Christian A. Kunder,Richard E. Fan,Pejman Ghanouni,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108318-108318 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108318
摘要

Image registration can map the ground truth extent of prostate cancer from histopathology images onto MRI, facilitating the development of machine learning methods for early prostate cancer detection. Here, we present RAdiology PatHology Image Alignment (RAPHIA), an end-to-end pipeline for efficient and accurate registration of MRI and histopathology images. RAPHIA automates several time-consuming manual steps in existing approaches including prostate segmentation, estimation of the rotation angle and horizontal flipping in histopathology images, and estimation of MRI-histopathology slice correspondences. By utilizing deep learning registration networks, RAPHIA substantially reduces computational time. Furthermore, RAPHIA obviates the need for a multimodal image similarity metric by transferring histopathology image representations to MRI image representations and vice versa. With the assistance of RAPHIA, novice users achieved expert-level performance, and their mean error in estimating histopathology rotation angle was reduced by 51% (12 degrees vs 8 degrees), their mean accuracy of estimating histopathology flipping was increased by 5% (95.3% vs 100%), and their mean error in estimating MRI-histopathology slice correspondences was reduced by 45% (1.12 slices vs 0.62 slices). When compared to a recent conventional registration approach and a deep learning registration approach, RAPHIA achieved better mapping of histopathology cancer labels, with an improved mean Dice coefficient of cancer regions outlined on MRI and the deformed histopathology (0.44 vs 0.48 vs 0.50), and a reduced mean per-case processing time (51 vs 11 vs 4.5 min). The improved performance by RAPHIA allows efficient processing of large datasets for the development of machine-learning models for prostate cancer detection on MRI. Our code is publicly available at: https://github.com/pimed/RAPHIA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噜噜噜发布了新的文献求助10
1秒前
1秒前
花式帅发布了新的文献求助10
3秒前
man发布了新的文献求助10
4秒前
nanjiren发布了新的文献求助10
4秒前
6秒前
不配.应助hegui采纳,获得50
6秒前
在水一方应助高无怨采纳,获得10
6秒前
Akim应助张瑞雪采纳,获得10
7秒前
强劲完成签到 ,获得积分10
7秒前
情怀应助逍遥子采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
852应助杏梨采纳,获得10
10秒前
xiaoKai完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
烛畔旧盟发布了新的文献求助10
13秒前
wonhui发布了新的文献求助10
13秒前
有魅力荟发布了新的文献求助10
13秒前
晚心发布了新的文献求助10
13秒前
天天快乐应助多情的如天采纳,获得10
13秒前
li发布了新的文献求助10
13秒前
lx发布了新的文献求助10
15秒前
tuanheqi应助就是躺采纳,获得30
16秒前
nanjiren完成签到,获得积分10
17秒前
小白发布了新的文献求助10
17秒前
糖小湫发布了新的文献求助10
17秒前
17秒前
花式帅完成签到,获得积分10
17秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
修仙应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
MJY-112完成签到 ,获得积分10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244258
求助须知:如何正确求助?哪些是违规求助? 2887961
关于积分的说明 8250828
捐赠科研通 2556504
什么是DOI,文献DOI怎么找? 1384815
科研通“疑难数据库(出版商)”最低求助积分说明 649936
邀请新用户注册赠送积分活动 626021