基因家族
基因
基因表达
外显子
遗传学
基因组
内含子
同源(生物学)
生物
作者
Liuliu Wu,Lifan Cao,Ye Tao,Halyna Zhatova,Haiyan Hu,Chengwei Li
标识
DOI:10.1016/j.ijbiomac.2024.131693
摘要
The Succinate-CoA ligase (SUCL1) gene family is involved in energy metabolism, phytohormone signaling, and plant growth, development, and tolerance to stress. This is the first study to analyze the SUCL1 gene family in wheat (Triticum aestivum). 17 TaSUCL1 genes were identified in the complete genome sequence and classified into five subfamilies based on related genes found in three other species. The 17 TaSUCL1 genes were unevenly distributed across 11 chromosomes, and the collinearity of these genes was further investigated. Through using real-time qPCR (RT-qPCR) analysis, we identified the expression patterns of the TaSUCL1 genes under various tissues and different heavy metal stress conditions. The functions of selected TaSUCL1-1 gene were investigated by RNA interference (RNAi). This study provided a comprehensive analysis of the TaSUCL1 gene family. Within the TaSUCL1 genes, the exon-intron structure and motif composition exhibited significant similarity among members of the same evolutionary branch. Homology analysis and phylogenetic comparison of the SUCL1 genes in different plants offered valuable insights for studying the evolutionary characteristics of the SUCL1 genes. The expression levels of the TaSUCL1 genes in different tissues and under various metal stress conditions reveal its important role in plant growth and development. Gene function analysis demonstrated that TaSUCL1-1 silenced wheat plants exhibited a decrease in the total cadmium (Cd) concentrations and gene expression levels compared to the wild type (WT). Additionally, TaSUCL1-1 belonging to class c physically interacts with the β-amylase protein TaBMY1 as verified by yeast two-hybridization. This research provides a useful resource for further study of the function and molecular genetic mechanism of the SUCL1 gene family members.
科研通智能强力驱动
Strongly Powered by AbleSci AI