已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 艺术 文学类
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier]
卷期号:245: 110372-110372 被引量:5
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助木子采纳,获得10
刚刚
沉静的万天完成签到 ,获得积分10
2秒前
小小发布了新的文献求助10
2秒前
3秒前
Leffzeng发布了新的文献求助10
4秒前
7秒前
长安完成签到 ,获得积分10
7秒前
北极星发布了新的文献求助30
8秒前
李爱国应助Danielwill采纳,获得10
9秒前
CipherSage应助xiyang采纳,获得10
10秒前
11秒前
12秒前
13秒前
难过的念桃完成签到 ,获得积分10
15秒前
好久不见完成签到 ,获得积分10
16秒前
欢呼败发布了新的文献求助10
17秒前
jjyy发布了新的文献求助10
17秒前
隐形曼青应助XIEQ采纳,获得10
17秒前
11122完成签到,获得积分10
17秒前
17秒前
Jasper应助大气的月饼采纳,获得10
17秒前
xkai发布了新的文献求助10
18秒前
fsznc1完成签到 ,获得积分0
19秒前
一部船完成签到 ,获得积分10
20秒前
木子发布了新的文献求助10
22秒前
善学以致用应助喜悦采纳,获得10
24秒前
小二完成签到 ,获得积分10
24秒前
24秒前
小蘑菇应助kkk采纳,获得10
24秒前
25秒前
yz发布了新的文献求助10
26秒前
李健的小迷弟应助北极星采纳,获得30
26秒前
ZJR完成签到 ,获得积分10
26秒前
木子完成签到,获得积分10
28秒前
Lll完成签到 ,获得积分20
29秒前
27小天使发布了新的文献求助30
29秒前
29秒前
华仔应助MissZhang采纳,获得10
29秒前
31秒前
ok完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679