DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 文学类 艺术
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier BV]
卷期号:245: 110372-110372 被引量:5
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
ding应助科研通管家采纳,获得10
刚刚
不安储完成签到,获得积分10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
cai'e驳回了wanci应助
刚刚
刚刚
刚刚
刚刚
刚刚
科研小辣椒2完成签到,获得积分20
刚刚
刚子完成签到,获得积分20
1秒前
JamesPei应助点心采纳,获得10
1秒前
1秒前
vivi完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
小小怪大士完成签到,获得积分10
2秒前
4秒前
大鸭梨发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
cxd发布了新的文献求助10
8秒前
霍华淞完成签到,获得积分10
8秒前
8秒前
可乐发布了新的文献求助10
8秒前
华仔应助是漏漏呀采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
肖易发布了新的文献求助10
9秒前
余姓懒完成签到,获得积分10
9秒前
FashionBoy应助CCccCCC采纳,获得10
9秒前
9秒前
点心完成签到,获得积分10
9秒前
FayWang发布了新的文献求助10
10秒前
852应助稳重秋寒采纳,获得10
10秒前
mo发布了新的文献求助10
10秒前
10秒前
Kvolu29完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4895590
求助须知:如何正确求助?哪些是违规求助? 4177439
关于积分的说明 12968084
捐赠科研通 3940612
什么是DOI,文献DOI怎么找? 2161948
邀请新用户注册赠送积分活动 1180309
关于科研通互助平台的介绍 1085892