DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 艺术 文学类
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier BV]
卷期号:245: 110372-110372 被引量:1
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弦弦弦发布了新的文献求助10
刚刚
1秒前
Minicoper发布了新的文献求助10
2秒前
2秒前
3秒前
Drhhhfff完成签到,获得积分10
3秒前
悦耳邑完成签到,获得积分10
3秒前
4秒前
4秒前
飞快的雅青完成签到 ,获得积分10
4秒前
激情的饼干完成签到,获得积分10
4秒前
x971017完成签到,获得积分10
5秒前
共享精神应助大海采纳,获得30
5秒前
Gaoyang发布了新的文献求助10
5秒前
5秒前
明理半山完成签到,获得积分10
6秒前
领导范儿应助有魅力雁蓉采纳,获得10
6秒前
1213完成签到 ,获得积分10
6秒前
无不破哉发布了新的文献求助10
7秒前
韶邑完成签到,获得积分10
7秒前
我是zpb发布了新的文献求助10
7秒前
lixl0725完成签到 ,获得积分10
8秒前
8秒前
张贵虎完成签到 ,获得积分10
9秒前
bendanzxx完成签到,获得积分20
9秒前
OIC发布了新的文献求助30
9秒前
Zyan完成签到 ,获得积分10
10秒前
orixero应助我学采纳,获得10
10秒前
朴实凝雁发布了新的文献求助10
11秒前
图图应助李嘉图采纳,获得50
11秒前
有魅力雁蓉完成签到,获得积分10
11秒前
好困应助lxx采纳,获得10
12秒前
小小威廉发布了新的文献求助10
12秒前
领导范儿应助阿鑫采纳,获得10
12秒前
12秒前
more应助x971017采纳,获得10
12秒前
1_0发布了新的文献求助10
13秒前
13秒前
科研通AI5应助丰富的晓亦采纳,获得10
13秒前
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733818
求助须知:如何正确求助?哪些是违规求助? 3278017
关于积分的说明 10006622
捐赠科研通 2994199
什么是DOI,文献DOI怎么找? 1642937
邀请新用户注册赠送积分活动 780744
科研通“疑难数据库(出版商)”最低求助积分说明 749004