清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 艺术 文学类
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier BV]
卷期号:245: 110372-110372 被引量:1
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简因完成签到 ,获得积分10
16秒前
1分钟前
Becky完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
桥西小河完成签到 ,获得积分10
1分钟前
胡可完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
紫熊完成签到,获得积分10
2分钟前
3分钟前
111完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
矢思然完成签到,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
5分钟前
小花匠发布了新的文献求助50
6分钟前
呃呃呃呃呃完成签到 ,获得积分10
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
7分钟前
紫熊发布了新的文献求助10
7分钟前
张同学快去做实验呀完成签到,获得积分10
7分钟前
7分钟前
紫熊发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
Dreamhappy完成签到,获得积分10
8分钟前
George完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
老石完成签到 ,获得积分10
10分钟前
10分钟前
宇文非笑完成签到 ,获得积分10
10分钟前
10分钟前
着急的松发布了新的文献求助10
10分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008393
求助须知:如何正确求助?哪些是违规求助? 3548117
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810258
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209