DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 文学类 艺术
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier BV]
卷期号:245: 110372-110372 被引量:5
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
因子完成签到,获得积分10
1秒前
3秒前
乌乌发布了新的文献求助10
4秒前
迟宏珈发布了新的文献求助10
5秒前
5秒前
领导范儿应助浅夏初晴采纳,获得10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得30
6秒前
Orange应助科研通管家采纳,获得30
6秒前
6秒前
研究生end应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助腿哥采纳,获得10
8秒前
超级的鞅发布了新的文献求助10
9秒前
9秒前
张丽妍发布了新的文献求助10
10秒前
Viper3发布了新的文献求助30
10秒前
苦行僧完成签到,获得积分10
10秒前
希望天下0贩的0应助未了采纳,获得10
11秒前
11秒前
完美世界应助王子恒采纳,获得10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488