DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 艺术 文学类
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier]
卷期号:245: 110372-110372 被引量:5
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yixuan_Zou发布了新的文献求助80
1秒前
风声亦寒发布了新的文献求助10
1秒前
镜之边缘完成签到,获得积分10
1秒前
jenny完成签到,获得积分10
1秒前
财源滚滚发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助haruki采纳,获得10
3秒前
3秒前
CipherSage应助zjq采纳,获得10
4秒前
研友_VZG7GZ应助耍酷曲奇采纳,获得10
4秒前
李婉婷发布了新的文献求助10
4秒前
小蒋完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
奶黄包发布了新的文献求助10
5秒前
Rsharply发布了新的文献求助10
5秒前
6秒前
sun完成签到,获得积分10
6秒前
7秒前
风中的断缘完成签到,获得积分10
7秒前
自由的筝发布了新的文献求助10
7秒前
精明之瑶发布了新的文献求助30
8秒前
8秒前
9秒前
10秒前
10秒前
10秒前
嘻嘻完成签到,获得积分10
11秒前
冯哒哒发布了新的文献求助10
11秒前
12秒前
12秒前
rongyiming发布了新的文献求助30
12秒前
Polling完成签到,获得积分10
12秒前
今后应助Dale采纳,获得10
12秒前
酷波er应助ZM采纳,获得10
12秒前
任性凤凰发布了新的文献求助10
13秒前
ding应助111采纳,获得10
13秒前
你好发布了新的文献求助10
13秒前
zjq发布了新的文献求助10
13秒前
yywd发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577111
求助须知:如何正确求助?哪些是违规求助? 4662375
关于积分的说明 14741491
捐赠科研通 4603039
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483