清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DE-GNN: Dual embedding with graph neural network for fine-grained encrypted traffic classification

计算机科学 对偶(语法数字) 交通分类 嵌入 加密 人工智能 人工神经网络 计算机网络 网络数据包 文学类 艺术
作者
Xinbo Han,Guizhong Xu,Meng Zhang,Zheng Yang,Ziyang Yu,Weiqing Huang,Meng Chen
出处
期刊:Computer Networks [Elsevier]
卷期号:245: 110372-110372
标识
DOI:10.1016/j.comnet.2024.110372
摘要

Nowadays, most network traffic is encrypted, which protects user privacy but complicates the task of analyzing and classifying encrypted traffic. Identifying the specific categories of encrypted traffic, such as application type or even the specific application, is of great significance for advanced network services and network security management. Many existing methods for encrypted traffic classification rely on machine learning and deep learning techniques, but they exhibit certain shortcomings. A considerable number of these methods rely on statistical features, which may lose their relevance as networks evolve and lead to the loss of important information. Additionally, Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) face limitations in extracting features from encrypted traffic, specifically, their inability to learn traffic interaction information within a network flow. To address these challenges, we propose a model called Dual Embedding with Graph Neural Networks (DE-GNN) for fine-grained encrypted traffic classification. Based on the byte-packet-flow structure of network traffic, we present a dual embedding layer that encodes the packet header and payload separately using raw bytes, which allows subsequent processes to run separately and in parallel. Then, we develop the PacketCNN to extract packet-level features from both the header and payload. Afterwards, we construct a network flow as a Traffic Interaction Graphs (TIG) and utilize Graph Neural Networks (GNNs) to extract flow-level features. Finally, an adaptive deep feature fusion process is applied to combine flow-level features from the header and payload, creating a robust representation for classification. Extensive experiments are conducted on two well-known datasets, ISCX-VPN2016 and ISCX-Tor2016, to verify our approach. The experimental results demonstrate that DE-GNN effectively identifies the type of encrypted traffic, outperforming baselines significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wodetaiyangLLL完成签到 ,获得积分10
2秒前
月亮完成签到,获得积分10
4秒前
4秒前
Jenny完成签到,获得积分10
6秒前
天天快乐应助月亮采纳,获得10
8秒前
Jenny发布了新的文献求助200
10秒前
CC完成签到,获得积分0
19秒前
ghan完成签到 ,获得积分10
39秒前
yujie完成签到 ,获得积分10
59秒前
cai白白完成签到,获得积分0
1分钟前
1分钟前
月亮发布了新的文献求助10
1分钟前
1分钟前
iberis完成签到 ,获得积分10
1分钟前
春华秋实发布了新的文献求助30
1分钟前
魏白晴完成签到,获得积分10
1分钟前
情怀应助佳哥闯天下采纳,获得10
1分钟前
17852573662完成签到,获得积分10
2分钟前
2分钟前
2分钟前
诚心的水杯完成签到 ,获得积分10
2分钟前
2分钟前
光亮的自行车完成签到 ,获得积分10
2分钟前
春华秋实完成签到,获得积分10
2分钟前
renxuda发布了新的文献求助10
2分钟前
sunny完成签到 ,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
3分钟前
jerry完成签到 ,获得积分10
3分钟前
wanci应助佳哥闯天下采纳,获得10
3分钟前
3分钟前
DayFu完成签到 ,获得积分10
3分钟前
稳重元菱发布了新的文献求助10
4分钟前
4分钟前
爱的魔力转圈圈完成签到,获得积分10
4分钟前
4分钟前
佳哥闯天下完成签到,获得积分20
4分钟前
打打应助稳重元菱采纳,获得10
4分钟前
子蓼完成签到 ,获得积分10
4分钟前
微卫星不稳定完成签到 ,获得积分0
5分钟前
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768807
捐赠科研通 2440219
什么是DOI,文献DOI怎么找? 1297340
科研通“疑难数据库(出版商)”最低求助积分说明 624925
版权声明 600792