已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xiaofang Qiu,Jiewei Huang,Haoxuan Luo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108721-108721 被引量:23
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
sunny完成签到 ,获得积分10
刚刚
1秒前
云朵云朵飘呀飘完成签到,获得积分10
3秒前
计划完成签到,获得积分10
4秒前
5秒前
Yuki完成签到 ,获得积分10
13秒前
xiaoxie完成签到 ,获得积分10
14秒前
suzy-123完成签到,获得积分10
15秒前
nen完成签到 ,获得积分10
15秒前
猫猫咪咪发布了新的文献求助10
15秒前
domingo完成签到,获得积分10
16秒前
wonwojo完成签到 ,获得积分10
20秒前
LH发布了新的文献求助50
20秒前
化学课die表完成签到 ,获得积分10
21秒前
归陌完成签到 ,获得积分10
21秒前
ewmmel完成签到 ,获得积分10
23秒前
平心定气完成签到 ,获得积分10
23秒前
yangjoy完成签到 ,获得积分10
24秒前
繁荣的凡完成签到 ,获得积分10
24秒前
gapper完成签到 ,获得积分10
25秒前
26秒前
朴素蓝完成签到 ,获得积分10
26秒前
甜心椰奶莓莓完成签到 ,获得积分10
28秒前
sx666完成签到 ,获得积分10
29秒前
30秒前
小冰发布了新的文献求助10
30秒前
打打应助失眠的数据线采纳,获得10
34秒前
ii发布了新的文献求助10
34秒前
tjnksy完成签到,获得积分10
35秒前
左鞅完成签到 ,获得积分10
36秒前
科研fw完成签到 ,获得积分10
36秒前
绝对草草完成签到,获得积分10
37秒前
鬼笔环肽完成签到 ,获得积分10
38秒前
雨城完成签到 ,获得积分10
39秒前
甜蜜的大象完成签到 ,获得积分10
45秒前
虚心飞荷完成签到 ,获得积分10
48秒前
48秒前
微风打了烊完成签到 ,获得积分10
50秒前
Precipitate完成签到 ,获得积分10
51秒前
tczw667完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497938
求助须知:如何正确求助?哪些是违规求助? 4595334
关于积分的说明 14448871
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481306
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438169