Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xiaofang Qiu,Jiewei Huang,Haoxuan Luo
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108721-108721 被引量:12
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助云梦泽采纳,获得10
1秒前
幽默新梅完成签到,获得积分10
2秒前
科目三应助pterionGao采纳,获得10
3秒前
5秒前
qq158014169完成签到,获得积分10
8秒前
8秒前
君莫笑完成签到 ,获得积分10
9秒前
慕青应助昵称231采纳,获得10
10秒前
微7发布了新的文献求助10
10秒前
SGQT完成签到,获得积分10
11秒前
12秒前
福福发布了新的文献求助10
12秒前
12秒前
随意发布了新的文献求助20
13秒前
13秒前
15秒前
16秒前
16秒前
xzy998发布了新的文献求助10
17秒前
17秒前
酷波er应助墙头的草采纳,获得10
17秒前
msk发布了新的文献求助10
17秒前
爱科研的東完成签到,获得积分10
18秒前
梨凉完成签到,获得积分10
19秒前
pterionGao发布了新的文献求助10
19秒前
江洋大盗发布了新的文献求助10
19秒前
Zhang发布了新的文献求助10
20秒前
香蕉觅云应助yyfer采纳,获得10
21秒前
LXYang完成签到,获得积分10
22秒前
健康的怡完成签到,获得积分20
24秒前
cjn发布了新的文献求助10
24秒前
25秒前
liangye2222完成签到,获得积分10
26秒前
王不留行完成签到 ,获得积分10
26秒前
戴戴发布了新的文献求助10
27秒前
111发布了新的文献求助10
27秒前
Ann完成签到,获得积分10
28秒前
小七完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160