Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xiaofang Qiu,Jiewei Huang,Haoxuan Luo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108721-108721 被引量:5
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzj0411发布了新的文献求助10
刚刚
mighu完成签到,获得积分10
1秒前
深情安青应助阿龍采纳,获得10
2秒前
科研完成签到,获得积分20
2秒前
陈二萌完成签到,获得积分10
2秒前
2秒前
4秒前
8秒前
JUSTDOIT发布了新的文献求助10
9秒前
研友_8Y2M0L发布了新的文献求助10
10秒前
Orange应助一站到底采纳,获得10
10秒前
小二郎应助ldj6670采纳,获得10
13秒前
香蕉觅云应助zzj0411采纳,获得10
13秒前
14秒前
xiaxia完成签到 ,获得积分10
14秒前
chyx完成签到,获得积分10
15秒前
15秒前
木木123发布了新的文献求助10
16秒前
17秒前
研友_8Y2M0L完成签到,获得积分10
17秒前
1111完成签到,获得积分10
17秒前
斯文败类应助凌云采纳,获得10
18秒前
chyx发布了新的文献求助10
19秒前
逍遥呱呱发布了新的文献求助10
19秒前
脑洞疼应助fish Liang采纳,获得50
20秒前
AYEFORBIDER发布了新的文献求助10
22秒前
22秒前
25秒前
美猴王完成签到,获得积分0
28秒前
猕猴桃发布了新的文献求助10
28秒前
我是老大应助xiaxia采纳,获得10
30秒前
swzzaf发布了新的文献求助10
30秒前
lhy完成签到,获得积分10
32秒前
33秒前
33秒前
shirain完成签到 ,获得积分10
34秒前
37秒前
38秒前
阿龍发布了新的文献求助10
39秒前
勤劳怜寒发布了新的文献求助10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307038
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499088
捐赠科研通 2615019
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318