Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xiaofang Qiu,Jiewei Huang,Haoxuan Luo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108721-108721 被引量:23
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmy完成签到,获得积分10
刚刚
刚刚
yangxt-iga发布了新的文献求助10
刚刚
体贴琳完成签到 ,获得积分10
刚刚
小于子88完成签到,获得积分10
刚刚
斯文败类应助vv1223采纳,获得20
1秒前
SciGPT应助不舍天真采纳,获得10
1秒前
1秒前
2秒前
LZCCC完成签到,获得积分10
2秒前
fvsuar完成签到,获得积分10
2秒前
大聪明发布了新的文献求助10
2秒前
Eins完成签到 ,获得积分10
2秒前
丢丢在吗发布了新的文献求助10
2秒前
佳佳发布了新的文献求助10
2秒前
su发布了新的文献求助10
2秒前
见雨鱼完成签到 ,获得积分10
2秒前
2秒前
狗熊发布了新的文献求助10
3秒前
3秒前
打打应助追寻的问玉采纳,获得10
3秒前
a'mao'men完成签到,获得积分10
3秒前
嘟嘟发布了新的文献求助10
3秒前
思源应助PaoPao采纳,获得10
3秒前
王旭发布了新的文献求助10
4秒前
小迷糊完成签到 ,获得积分10
4秒前
4秒前
Simone发布了新的文献求助10
4秒前
昌怜烟完成签到,获得积分10
5秒前
5秒前
呢n完成签到 ,获得积分10
5秒前
6秒前
miawei完成签到,获得积分10
6秒前
生活散文发布了新的文献求助10
6秒前
VV发布了新的文献求助10
6秒前
Hoiden完成签到,获得积分10
6秒前
you完成签到,获得积分10
7秒前
liuyong完成签到,获得积分10
7秒前
海之恋心完成签到 ,获得积分10
7秒前
东邪西毒加任我行完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977