Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xinghui Qiu,Jiewei Huang,Luo Hai-tao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108721-108721 被引量:2
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王稀松发布了新的社区帖子
1秒前
乐观的皮卡丘完成签到,获得积分10
1秒前
烟花应助美丽采纳,获得10
2秒前
susuna关注了科研通微信公众号
2秒前
2秒前
李神奇应助十七采纳,获得20
2秒前
奇奇怪怪发布了新的文献求助10
4秒前
Fionaaaa完成签到,获得积分10
4秒前
4秒前
dony发布了新的文献求助10
6秒前
玄鸟纸鸢完成签到,获得积分10
6秒前
学术大白完成签到,获得积分10
9秒前
狂奔的哈士奇完成签到,获得积分10
10秒前
goodesBright应助elooo采纳,获得10
10秒前
巴纳拉完成签到,获得积分10
11秒前
lily88发布了新的文献求助10
11秒前
缥缈逍遥完成签到 ,获得积分10
12秒前
13秒前
科研通AI2S应助无情的畅采纳,获得10
13秒前
树懒发布了新的文献求助10
13秒前
Hello应助王端端采纳,获得10
14秒前
dony完成签到,获得积分10
14秒前
leyellows完成签到 ,获得积分10
16秒前
17秒前
明亮无颜完成签到,获得积分10
17秒前
罗零完成签到 ,获得积分10
18秒前
susuna发布了新的文献求助10
20秒前
空白完成签到,获得积分10
20秒前
书起洛阳完成签到,获得积分20
21秒前
22秒前
美丽发布了新的文献求助10
26秒前
阿池完成签到 ,获得积分10
29秒前
snail01完成签到,获得积分10
29秒前
594612完成签到 ,获得积分10
29秒前
风中的傲安完成签到,获得积分20
30秒前
Nolan完成签到,获得积分10
31秒前
Cold-Drink-Shop完成签到,获得积分10
32秒前
orixero应助我讨厌科研采纳,获得10
32秒前
35秒前
小破网完成签到 ,获得积分0
36秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723483
关于积分的说明 7481948
捐赠科研通 2370550
什么是DOI,文献DOI怎么找? 1257057
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596861