Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xiaofang Qiu,Jiewei Huang,Haoxuan Luo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108721-108721 被引量:23
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Altria采纳,获得10
刚刚
刚刚
ccm应助wentong采纳,获得10
刚刚
酷酷的安柏完成签到 ,获得积分10
1秒前
飞雪完成签到,获得积分10
1秒前
IFYK发布了新的文献求助10
2秒前
3秒前
爱吃香菜发布了新的文献求助10
4秒前
平平无奇小垃圾完成签到,获得积分20
5秒前
han完成签到,获得积分20
5秒前
5秒前
学萌发布了新的文献求助60
5秒前
田様应助久久压采纳,获得10
6秒前
6秒前
稳重的香萱完成签到 ,获得积分10
7秒前
7秒前
钰儿发布了新的文献求助10
8秒前
朴实涵山完成签到 ,获得积分10
8秒前
鹏程万里完成签到,获得积分10
10秒前
10秒前
汉堡肉发布了新的文献求助10
11秒前
烟雨醉巷发布了新的文献求助10
12秒前
12秒前
13秒前
时尚捕发布了新的文献求助10
14秒前
不拿拿完成签到 ,获得积分10
14秒前
浮游应助想学习采纳,获得10
14秒前
SciGPT应助paul采纳,获得10
15秒前
十三豆发布了新的文献求助10
16秒前
黄心悦发布了新的文献求助10
16秒前
wentong完成签到,获得积分10
16秒前
大水发布了新的文献求助10
17秒前
silent完成签到,获得积分10
17秒前
小章鱼发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
久久压发布了新的文献求助10
18秒前
粒子耶完成签到,获得积分10
19秒前
Zhou发布了新的文献求助20
20秒前
时尚捕完成签到,获得积分20
20秒前
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454534
求助须知:如何正确求助?哪些是违规求助? 4561872
关于积分的说明 14283842
捐赠科研通 4485737
什么是DOI,文献DOI怎么找? 2456966
邀请新用户注册赠送积分活动 1447648
关于科研通互助平台的介绍 1422874