Design of citrus peel defect and fruit morphology detection method based on machine vision

机器视觉 形态学(生物学) 计算机视觉 生物系统 人工智能 数学形态学 园艺 计算机科学 工程制图 工程类 图像处理 生物 图像(数学) 遗传学
作者
Jianqiang Lu,Wadi Chen,Yubin Lan,Xiaofang Qiu,Jiewei Huang,Haoxuan Luo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108721-108721 被引量:23
标识
DOI:10.1016/j.compag.2024.108721
摘要

Identifying defects in citrus peels and analyzing fruit morphology are two core challenges in citrus quality inspection. In order to more accurately identify minor defects on citrus peels, we proposed a detection model Yolo-FD (Yolo for defects). The model was based on the Yolov5 network framework, and the backbone network embedded the Three-dimensional Coordinate Attention (TDCA) mechanism innovatively designed in this study. It accurately captured the subtle changes and feature associations of the target in spatial location, significantly enhancing the model's ability to perceive defects in fruit peels. Moreover, we employed a simplified Bidirectional Weighted Feature Pyramid Network (BiFPN) in the model to achieve cross-scale connections and improve the feature fusion ability of the model. At the same time, Contextual Transformer block (COT) was introduced into Neck network and the CoT3 module was built to fully capture the static and dynamic contextual information in the citrus defects images and enhance the expression of the feature map. Through this series of improvement methods, missed detections and false detections caused by small targets were effectively reduced. Fruit morphology detection was combined with the Partice Swarm Optimized Extreme Learning Machine (PSO-ELM) model to determine whether the citrus fruit morphology was well-formed, using the symmetry index, roundness and tilt angle of the citrus as input parameters. The experimental results indicated that the mean average precision of the Yolo-FD model is 98.7 % (mAP-0.5). Compared with Yolov5s, Yolov7-tiny, and Yolov8n, the mAP was improved by 1.4 %, 1.5 %, and 0.5 % respectively. Its average detection time for a single frame image on the server was 19.5 ms. And the PSO-ELM model achieved a fruit morphology detection accuracy of 91.42 %, a coefficient of determination of 0.9044, and a mean squared error of 0.8497. The research results met the accuracy and real-time requirements for citrus sorting on the production line, and could provide an effective solution for citrus grading and quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaopeipei完成签到,获得积分10
刚刚
Sway完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
刘强发布了新的文献求助10
2秒前
3秒前
yuanquaner完成签到,获得积分10
3秒前
隐形曼青应助ofa采纳,获得30
5秒前
哇哇哇发布了新的文献求助10
6秒前
7秒前
12完成签到,获得积分10
8秒前
JamesPei应助王阿欣采纳,获得10
8秒前
许子健发布了新的文献求助30
8秒前
Taelihar发布了新的文献求助30
9秒前
Criminology34应助llllliu采纳,获得10
9秒前
11秒前
93发布了新的文献求助10
12秒前
ding应助菜的睡不着采纳,获得10
13秒前
15秒前
16秒前
mujianhua完成签到,获得积分20
18秒前
18秒前
大个应助hhh采纳,获得10
19秒前
19秒前
20秒前
kitty发布了新的文献求助10
21秒前
lily发布了新的文献求助10
21秒前
21秒前
善学以致用应助徐志豪采纳,获得10
21秒前
回家睡觉完成签到,获得积分10
22秒前
甜蜜秋蝶完成签到,获得积分10
23秒前
许子健发布了新的文献求助10
23秒前
马霄鑫发布了新的文献求助10
25秒前
南瓜发布了新的文献求助10
26秒前
晴空发布了新的文献求助10
27秒前
27秒前
徐志豪完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949