A novel meta-learning approach for few-shot short-term wind power forecasting

期限(时间) 风力发电 风电预测 功率(物理) 弹丸 计算机科学 气象学 人工智能 环境科学 运筹学 机器学习 工程类 电力系统 电气工程 地理 物理 量子力学 有机化学 化学
作者
Fuhao Chen,Jie Yan,Yongqian Liu,Yamin Yan,Lina Bertling Tjernberg
出处
期刊:Applied Energy [Elsevier BV]
卷期号:362: 122838-122838 被引量:13
标识
DOI:10.1016/j.apenergy.2024.122838
摘要

Few-Shot Short-Term Wind Power Forecasting (FS-STWPF) is designed to develop accurate short-term wind power forecasting models with limited training data, reducing the losses suffered by wind farms and power systems due to the data scarcity. Based on the idea of extracting valuable knowledge from the source wind farms and then applying it to the target wind farm, a novel Meta-Learning approach (WG-Reptile) has been proposed in this paper. Building on the existing Reptile algorithm, two specific designs have been made in WG-Reptile for FS-STWPF: (1) Within-Task Samples Assignment method based on Operational Scenario (WTSAOS) has been proposed to improve the adaptability of the models to changing conditions. (2) Gradients Conflict Attenuation method based on Cosine Similarity (GCACS) has been proposed to enhance the effect of knowledge fusion from different source wind farms. Two open wind power forecasting datasets and three deep learning models have been used to implement 24-h-ahead FS-STWPF experiments with different amounts of training data. The results illustrate that the proposed WG-Reptile is able to outperform the other few-shot learning approaches. Intuitively, with only 30-day training data, the accuracy of the proposed WG-Reptile can be equivalent to the conventional supervised learning approaches trained on 6-month.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fahbfafajk发布了新的文献求助20
3秒前
6秒前
斯文败类应助薄荷采纳,获得30
7秒前
7秒前
小杨发布了新的文献求助10
13秒前
阿珩完成签到,获得积分10
13秒前
15秒前
16秒前
21秒前
Jasper应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
bingxinl应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
xunxunmimi应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
xunxunmimi应助科研通管家采纳,获得10
25秒前
bingxinl应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
26秒前
30秒前
30秒前
当当发布了新的文献求助10
31秒前
31秒前
34秒前
35秒前
AshEnder发布了新的文献求助10
35秒前
标致谷菱完成签到,获得积分10
36秒前
36秒前
37秒前
37秒前
39秒前
39秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775713
求助须知:如何正确求助?哪些是违规求助? 3321315
关于积分的说明 10204848
捐赠科研通 3036291
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783